Skip to main content

5-HT2A Receptors in the Basal Ganglia

  • Chapter
  • First Online:
Book cover 5-HT2A Receptors in the Central Nervous System

Part of the book series: The Receptors ((REC,volume 32))

Abstract

The serotonin2A (5-HT2A) receptor is present in the basal ganglia (BG), a group of subcortical structures involved in the control of motor behaviours. It is one of the numerous serotonin (5-HT) G-protein coupled receptors responding to the release of 5-HT from neurons of the dorsal raphe nucleus. The interest brought to the function of 5-HT2A receptors in the BG is related to the possible implication of 5-HT2 receptors in the regulation of mesencephalic dopaminergic neurons and the deleterious side effects of long-term treatment with antipsychotic medication.

The 5-HT2A receptors are mostly expressed in the cortex and to a lesser extent in the BG, where other 5-HT receptor subtypes show stronger expression. Nonetheless, numerous cells including dopaminergic, GABAergic, glutamatergic or cholinergic neurons express 5-HT2A receptors brain-wide. Correspondingly, 5-HT2A receptors modulate the metabolic and electrophysiological activity of some neuronal populations including dopaminergic and GABAergic neurons. This control involves 5-HT2A receptors in the BG and is specific and state-dependent, in particular with regard to the level of dopaminergic transmission. Behavioural data have also shown that 5-HT2A receptor agents modulate the effects of a variety of psychotropic agents including drugs of abuse and antipsychotic drugs. Moreover, the 5-HT2A receptor-mediated modulation is altered in animal models of Parkinson’s disease, tardive dyskinesia, L-DOPA-induced dyskinesia and drug addiction.

This chapter summarizes data exploring the role of 5-HT2A receptors in the BG, which remains an important topic for research aimed at ameliorating current treatments of schizophrenia, Parkinson’s disease and addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

Serotonin

5-HT2A receptor:

Serotonin 2A receptor subtype

6-OHDA:

6-Hydroxydopamine

BG:

Basal Ganglia

DA:

Dopamine

DOI:

1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane

DRN:

Dorsal raphe nucleus

EP:

Entopeduncular nucleus

EPS:

Extrapyramidal side effects

GPe:

External globus pallidus

GPi:

Internal globus pallidus

IHC:

Immunohistochemical studies

LSD:

Lysergic acid diethylamide

m-CPP:

Metachlorophenylpiperazine

MDL 100,907:

(R-(+)-a-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol)

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MRN:

Medial raphe nucleus

mRNA ISH:

mRNA in situ hybridization

NAc:

Nucleus Accumbens

OCD:

Obsessive Compulsive Disorders

PCP:

Phencyclidine

pCPA:

para-chlorophenylalanine

PD:

Parkinson’s disease

PET:

Positron emission tomography

PPE:

Preproenkephalin

PPT:

Preprotachykinin

Ro 60–0175:

S-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine

RT-PCR:

Reverse transcription polymerase chain reaction

RU-29469:

5-Methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H–indole

SB 228357:

1–5[−fluoro-3-(3-pyridyl)phenyl-carbamoyl] -5- methoxy-6-trifluo-romethylindoline

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

SPNs:

Spiny projecting neurons

STN:

Subthalamic nucleus

TFMPP:

Trifluoromethylphenylpiperazine

TH:

Tyrosine hydroxylase

VTA:

Ventral tegmental area

References

  1. Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425

    Article  CAS  PubMed  Google Scholar 

  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375

    Article  CAS  PubMed  Google Scholar 

  3. Di Chiara G (1995) The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 38(2):95–137

    Article  PubMed  Google Scholar 

  4. Kapur S, Agid O, Mizrahi R, Li M (2006) How antipsychotics work-from receptors to reality. NeuroRx 3(1):10–21. https://doi.org/10.1016/j.nurx.2005.12.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13(5):177–184

    Article  CAS  PubMed  Google Scholar 

  6. Mink JW (2006) Neurobiology of basal ganglia and Tourette syndrome: basal ganglia circuits and thalamocortical outputs. Adv Neurol 99:89–98

    PubMed  Google Scholar 

  7. Dray A, Davies J, Oakley NR, Tongroach P, Vellucci S (1978) The dorsal and medial raphe projections to the substantia nigra in the rat: electrophysiological, biochemical and behavioural observations. Brain Res 151(3):431–442

    Article  CAS  PubMed  Google Scholar 

  8. Kapur S, Remington G (1996) Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry 153(4):466–476

    Article  CAS  PubMed  Google Scholar 

  9. Westfall TC, Tittermary V (1982) Inhibition of the electrically induced release of [3H]dopamine by serotonin from superfused rat striatal slices. Neurosci Lett 28(2):205–209

    Article  CAS  PubMed  Google Scholar 

  10. Meltzer HY, Li Z, Kaneda Y, Ichikawa J (2003) Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 27(7):1159–1172. https://doi.org/10.1016/j.pnpbp.2003.09.010

    Article  CAS  Google Scholar 

  11. Meltzer HY, Matsubara S, Lee JC (1989a) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251(1):238–246

    CAS  PubMed  Google Scholar 

  12. Meltzer HY, Matsubara S, Lee JC (1989b) The ratios of serotonin2 and dopamine2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacol Bull 25(3):390–392

    CAS  PubMed  Google Scholar 

  13. Di Giovanni G, De Deurwaerdere P (2016) New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacol Ther 157:125–162. https://doi.org/10.1016/j.pharmthera.2015.11.009

    Article  PubMed  CAS  Google Scholar 

  14. Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G et al (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedeberg's Arch Pharmacol 370(2):114–123. https://doi.org/10.1007/s00210-004-0951-4

    Article  CAS  Google Scholar 

  15. Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15(6):638–644. https://doi.org/10.1016/j.conb.2005.10.006

    Article  CAS  PubMed  Google Scholar 

  16. Obeso JA, Rodriguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C et al (2008) Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord 23(Suppl 3):S548–S559

    Article  PubMed  Google Scholar 

  17. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13(7):266–271

    Article  CAS  PubMed  Google Scholar 

  18. Mogenson GJ, Yang CR (1991) The contribution of basal forebrain to limbic-motor integration and the mediation of motivation to action. Adv Exp Med Biol 295:267–290

    Article  CAS  PubMed  Google Scholar 

  19. Kolomiets BP, Deniau JM, Glowinski J, Thierry AM (2003) Basal ganglia and processing of cortical information: functional interactions between trans-striatal and trans-subthalamic circuits in the substantia nigra pars reticulata. Neuroscience 117(4):931–938

    Article  CAS  PubMed  Google Scholar 

  20. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13(7):281–285

    Article  CAS  PubMed  Google Scholar 

  21. Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119(7):1459–1474. doi: S1388-2457(08)00198-3 [pii]. https://doi.org/10.1016/j.clinph.2008.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667

    Article  CAS  PubMed  Google Scholar 

  23. Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299(1):1–16. https://doi.org/10.1002/cne.902990102

    Article  CAS  PubMed  Google Scholar 

  24. Parent A, Descarries L, Beaudet A (1981) Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H]5-hydroxytryptamine. Neuroscience 6(2):115–138

    Article  CAS  PubMed  Google Scholar 

  25. Parent M, Wallman MJ, Gagnon D, Parent A (2011) Serotonin innervation of basal ganglia in monkeys and humans. J Chem Neuroanat 41(4):256–265. doi: S0891-0618(11)00048-2 [pii]. https://doi.org/10.1016/j.jchemneu.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  26. De Deurwaerdere P, Di Giovanni G (2017) Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Prog Neurobiol 151:175–236. https://doi.org/10.1016/j.pneurobio.2016.03.004

  27. Di Matteo V, Pierucci M, Esposito E, Crescimanno G, Benigno A, Di Giovanni G (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. Prog Brain Res 172:423–463

    Article  PubMed  CAS  Google Scholar 

  28. Moukhles H, Bosler O, Bolam JP, Vallee A, Umbriaco D, Geffard M et al (1997) Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience 76(4):1159–1171

    Article  CAS  PubMed  Google Scholar 

  29. Soghomonian JJ, Descarries L, Watkins KC (1989) Serotonin innervation in adult rat neostriatum. II. Ultrastructural features: a radioautographic and immunocytochemical study. Brain Res 481(1):67–86

    Article  CAS  PubMed  Google Scholar 

  30. Steinbusch HW (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6(4):557–618. doi: 0306-4522(81)90146-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  31. Sur C, Betz H, Schloss P (1996) Immunocytochemical detection of the serotonin transporter in rat brain. Neuroscience 73(1):217–231. doi: 0306452296000309 [pii]

    Article  CAS  PubMed  Google Scholar 

  32. Wallman MJ, Gagnon D, Parent M (2011) Serotonin innervation of human basal ganglia. Eur J Neurosci 33(8):1519–1532. https://doi.org/10.1111/j.1460-9568.2011.07621.x

    Article  PubMed  Google Scholar 

  33. Herve D, Pickel VM, Joh TH, Beaudet A (1987) Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res 435(1–2):71–83

    Article  CAS  PubMed  Google Scholar 

  34. Van Bockstaele EJ, Biswas A, Pickel VM (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624(1–2):188–198

    Article  PubMed  Google Scholar 

  35. Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L (2014) Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Front Neural Circuits 8:21. https://doi.org/10.3389/fncir.2014.00021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ et al (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46(2):157–203

    CAS  PubMed  Google Scholar 

  37. Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT (1997) Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn Schmiedeberg's Arch Pharmacol 356(4):446–454

    Article  CAS  Google Scholar 

  38. Pazos A, Cortes R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346(2):231–249

    Article  CAS  PubMed  Google Scholar 

  39. Huot P, Johnston TH, Winkelmolen L, Fox SH, Brotchie JM (2012) 5-HT2A receptor levels increase in MPTP-lesioned macaques treated chronically with L-DOPA. Neurobiol Aging 33(1):194 e195–115. https://doi.org/10.1016/j.neurobiolaging.2010.04.035

  40. Lopez-Gimenez JF, Vilaro MT, Palacios JM, Mengod G (1998) [3H]MDL 100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology 37(9):1147–1158

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Gimenez JF, Vilaro MT, Palacios JM, Mengod G (2001a) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429(4):571–589

    Article  CAS  PubMed  Google Scholar 

  42. Riahi G, Morissette M, Parent M, Di Paolo T (2011) Brain 5-HT(2A) receptors in MPTP monkeys and levodopa-induced dyskinesias. Eur J Neurosci 33(10):1823–1831. https://doi.org/10.1111/j.1460-9568.2011.07675.x

    Article  PubMed  Google Scholar 

  43. Hall H, Farde L, Halldin C, Lundkvist C, Sedvall G (2000) Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907. Synapse 38(4):421–431. https://doi.org/10.1002/1098-2396(20001215)38:4<421::AID-SYN7>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  44. Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT (1999) Human striosomes are enriched in 5-HT2A receptors: autoradiographical visualization with [3H]MDL100,907,[125I](+/−)DOI and [3H]ketanserin. Eur J Neurosci 11(10):3761–3765

    Article  CAS  PubMed  Google Scholar 

  45. Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain--IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21(1):123–139

    Article  CAS  PubMed  Google Scholar 

  46. Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311(5985):461–464

    Article  CAS  PubMed  Google Scholar 

  47. Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236(4):454–476. https://doi.org/10.1002/cne.902360404

    Article  CAS  PubMed  Google Scholar 

  48. Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C, and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370(3):405–414

    Article  CAS  PubMed  Google Scholar 

  49. Burnet PW, Eastwood SL, Lacey K, Harrison PJ (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res 676(1):157–168. doi: 0006-8993(95)00104-X [pii]

    Article  CAS  PubMed  Google Scholar 

  50. Mengod G, Pompeiano M, Martinez-Mir MI, Palacios JM (1990) Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain Res 524(1):139–143

    Article  CAS  PubMed  Google Scholar 

  51. Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23(1–2):163–178

    Article  CAS  PubMed  Google Scholar 

  52. Zhang X, Andren PE, Svenningsson P (2007) Changes on 5-HT2 receptor mRNAs in striatum and subthalamic nucleus in Parkinson’s disease model. Physiol Behav 92(1–2):29–33. https://doi.org/10.1016/j.physbeh.2007.05.033

    Article  CAS  PubMed  Google Scholar 

  53. Pasqualetti M, Nardi I, Ladinsky H, Marazziti D, Cassano GB (1996) Comparative anatomical distribution of serotonin 1A, 1D alpha and 2A receptor mRNAs in human brain postmortem. Brain Res Mol Brain Res 39(1–2):223–233

    Article  CAS  PubMed  Google Scholar 

  54. Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351(3):357–373. https://doi.org/10.1002/cne.903510304

    Article  CAS  PubMed  Google Scholar 

  55. Mijnster MJ, Raimundo AG, Koskuba K, Klop H, Docter GJ, Groenewegen HJ et al (1997) Regional and cellular distribution of serotonin 5-hydroxytryptamine2a receptor mRNA in the nucleus accumbens, olfactory tubercle, and caudate putamen of the rat. J Comp Neurol 389(1):1–11. https://doi.org/10.1002/(SICI)1096-9861(19971208)389:1<1::AID-CNE1>3.0.CO;2-6. [pii]

    Article  CAS  PubMed  Google Scholar 

  56. Biver F, Goldman S, Luxen A, Monclus M, Forestini M, Mendlewicz J et al (1994) Multicompartmental study of fluorine-18 altanserin binding to brain 5HT2 receptors in humans using positron emission tomography. Eur J Nucl Med 21(9):937–946

    Article  CAS  PubMed  Google Scholar 

  57. Haugbol S, Pinborg LH, Arfan HM, Frokjaer VM, Madsen J, Dyrby TB et al (2007) Reproducibility of 5-HT2A receptor measurements and sample size estimations with [18F]altanserin PET using a bolus/infusion approach. Eur J Nucl Med Mol Imaging 34(6):910–915. https://doi.org/10.1007/s00259-006-0296-y

    Article  PubMed  CAS  Google Scholar 

  58. Ito H, Nyberg S, Halldin C, Lundkvist C, Farde L (1998) PET imaging of central 5-HT2A receptors with carbon-11-MDL 100,907. J Nucl Med 39(1):208–214

    CAS  PubMed  Google Scholar 

  59. Pinborg LH, Adams KH, Svarer C, Holm S, Hasselbalch SG, Haugbol S et al (2003) Quantification of 5-HT2A receptors in the human brain using [18F]altanserin-PET and the bolus/infusion approach. J Cereb Blood Flow Metab 23(8):985–996. https://doi.org/10.1097/01.WCB.0000074092.59115.23

    Article  CAS  PubMed  Google Scholar 

  60. Riss PJ, Hong YT, Williamson D, Caprioli D, Sitnikov S, Ferrari V et al (2011) Validation and quantification of [18F]altanserin binding in the rat brain using blood input and reference tissue modeling. J Cereb Blood Flow Metab 31(12):2334–2342. https://doi.org/10.1038/jcbfm.2011.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409(2):187–209. https://doi.org/10.1002/(SICI)1096-9861(19990628)409:2<187::AID-CNE2>3.0.CO;2-P. [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Xu T, Pandey SC (2000) Cellular localization of serotonin(2A) (5HT(2A)) receptors in the rat brain. Brain Res Bull 51(6):499–505. doi: S0361-9230(99)00278-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Morilak DA, Garlow SJ, Ciaranello RD (1993) Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience 54(3):701–717. doi: 0306-4522(93)90241-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  64. Morilak DA, Somogyi P, Lujan-Miras R, Ciaranello RD (1994) Neurons expressing 5-HT2 receptors in the rat brain: neurochemical identification of cell types by immunocytochemistry. Neuropsychopharmacology 11(3):157–166. https://doi.org/10.1038/sj.npp.1380102.1380102. [pii]

    Article  CAS  PubMed  Google Scholar 

  65. Rodriguez JJ, Garcia DR, Pickel VM (1999) Subcellular distribution of 5-hydroxytryptamine2A and N-methyl-D-aspartate receptors within single neurons in rat motor and limbic striatum. J Comp Neurol 413(2):219–231. https://doi.org/10.1002/(SICI)1096-9861(19991018)413:2<219::AID-CNE4>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  66. Ikemoto K, Nishimura A, Okado N, Mikuni M, Nishi K, Nagatsu I (2000) Human midbrain dopamine neurons express serotonin 2A receptor: an immunohistochemical demonstration. Brain Res 853(2):377–380

    Article  CAS  PubMed  Google Scholar 

  67. Mengod G, Palacios JM, Cortes R (2015) Cartography of 5-HT1A and 5-HT2A receptor subtypes in prefrontal cortex and its projections. ACS Chem Neurosci 6(7):1089–1098. https://doi.org/10.1021/acschemneuro.5b00023

    Article  CAS  PubMed  Google Scholar 

  68. Bubser M, Backstrom JR, Sanders-Bush E, Roth BL, Deutch AY (2001) Distribution of serotonin 5-HT(2A) receptors in afferents of the rat striatum. Synapse 39(4):297–304. https://doi.org/10.1002/1098-2396(20010315)39:4<297::AID-SYN1012>3.0.CO;2-Q

  69. Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864(2):176–185

    Article  CAS  PubMed  Google Scholar 

  70. Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111(1):163–176

    Article  CAS  PubMed  Google Scholar 

  71. Lukasiewicz S, Polit A, Kedracka-Krok S, Wedzony K, Mackowiak M, Dziedzicka-Wasylewska M (2010) Hetero-dimerization of serotonin 5-HT(2A) and dopamine D(2) receptors. Biochim Biophys Acta 1803(12):1347–1358. doi: S0167-4889(10)00226-0 [pii]. https://doi.org/10.1016/j.bbamcr.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  72. Davies J, Tongroach P (1978) Neuropharmacological studies on the nigro-striatal and raphe-striatal system in the rat. Eur J Pharmacol 51(2):91–100

    Article  CAS  PubMed  Google Scholar 

  73. Olpe HR, Koella WP (1977) The response of striatal cells upon stimulation of the dorsal and median raphe nuclei. Brain Res 122(2):357–360

    Article  CAS  PubMed  Google Scholar 

  74. Yakel JL, Trussell LO, Jackson MB (1988) Three serotonin responses in cultured mouse hippocampal and striatal neurons. J Neurosci 8(4):1273–1285

    CAS  PubMed  Google Scholar 

  75. Park MR, Gonzales-Vegas JA, Kitai ST (1982) Serotonergic excitation from dorsal raphe stimulation recorded intracellularly from rat caudate-putamen. Brain Res 243(1):49–58

    Article  CAS  PubMed  Google Scholar 

  76. Stefani A, Surmeier DJ, Kitai ST (1990) Serotonin enhances excitability in neostriatal neurons by reducing voltage-dependent potassium currents. Brain Res 529(1–2):354–357

    Article  CAS  PubMed  Google Scholar 

  77. Vandermaelen CP, Bonduki AC, Kitai ST (1979) Excitation of caudate-putamen neurons following stimulation of the dorsal raphe nucleus in the rat. Brain Res 175(2):356–361. doi: 0006-8993(79)91016-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  78. Wilms K, Vierig G, Davidowa H (2001) Interactive effects of cholecystokinin-8S and various serotonin receptor agonists on the firing activity of neostriatal neuronesin rats. Neuropeptides 35(5–6):257–270. https://doi.org/10.1054/npep.2001.0875

    Article  CAS  PubMed  Google Scholar 

  79. Gerber R, Altar CA, Liebman JM (1988) Rotational behavior induced by 8-hydroxy-DPAT, a putative 5HT-1A agonist, in 6-hydroxydopamine-lesioned rats. Psychopharmacology 94(2):178–182

    Article  CAS  PubMed  Google Scholar 

  80. Knobelman DA, Kung HF, Lucki I (2000) Regulation of extracellular concentrations of 5-hydroxytryptamine (5-HT) in mouse striatum by 5-HT(1A) and 5-HT(1B) receptors. J Pharmacol Exp Ther 292(3):1111–1117

    CAS  PubMed  Google Scholar 

  81. Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S et al (2005) Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58(3):193–199. https://doi.org/10.1002/syn.20195

    Article  CAS  PubMed  Google Scholar 

  82. Mignon L, Wolf WA (2007) Postsynaptic 5-HT1A receptor stimulation increases motor activity in the 6-hydroxydopamine-lesioned rat: implications for treating Parkinson's disease. Psychopharmacology 192(1):49–59. https://doi.org/10.1007/s00213-006-0680-0

    Article  CAS  PubMed  Google Scholar 

  83. Mignon LJ, Wolf WA (2005) 8-hydroxy-2-(di-n-propylamino)tetralin reduces striatal glutamate in an animal model of Parkinson’s disease. Neuroreport 16(7):699–703. doi: 00001756-200505120-00009 [pii]

    Article  CAS  PubMed  Google Scholar 

  84. Dijk SN, Francis PT, Stratmann GC, Bowen DM (1995) NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist. Br J Pharmacol 115(7):1169–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. el Mansari M, Blier P (1997) In vivo electrophysiological characterization of 5-HT receptors in the guinea pig head of caudate nucleus and orbitofrontal cortex. Neuropharmacology 36(4–5):577–588

    Article  CAS  PubMed  Google Scholar 

  86. el Mansari M, Radja F, Ferron A, Reader TA, Molina-Holgado E, Descarries L (1994) Hypersensitivity to serotonin and its agonists in serotonin-hyperinnervated neostriatum after neonatal dopamine denervation. Eur J Pharmacol 261(1–2):171–178

    Article  PubMed  Google Scholar 

  87. Blomeley CP, Bracci E (2009) Serotonin excites fast-spiking interneurons in the striatum. Eur J Neurosci 29(8):1604–1614. https://doi.org/10.1111/j.1460-9568.2009.06725.x

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bonsi P, Cuomo D, Ding J, Sciamanna G, Ulrich S, Tscherter A et al (2007) Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT 2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. Neuropsychopharmacology 32(8):1840–1854. https://doi.org/10.1038/sj.npp.1301294

    Article  CAS  PubMed  Google Scholar 

  89. North RA, Uchimura N (1989) 5-Hydroxytryptamine acts at 5-HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. J Physiol 417:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muramatsu M, Lapiz MD, Tanaka E, Grenhoff J (1998) Serotonin inhibits synaptic glutamate currents in rat nucleus accumbens neurons via presynaptic 5-HT1B receptors. Eur J Neurosci 10(7):2371–2379

    Article  CAS  PubMed  Google Scholar 

  91. Collingridge GL, Davies J (1981) The influence of striatal stimulation and putative neurotransmitters on identified neurones in the rat substantia nigra. Brain Res 212(2):345–359. doi: 0006-8993(81)90467-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  92. Di Giovanni G, Di Matteo V, La Grutta V, Esposito E (2001) M-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience 103(1):111–116

    Article  PubMed  Google Scholar 

  93. Dray A (1981) Serotonin in the basal ganglia: functions and interactions with other neuronal pathways. J Physiol Paris 77(2–3):393–403

    CAS  PubMed  Google Scholar 

  94. Invernizzi RW, Pierucci M, Calcagno E, Di Giovanni G, Di Matteo V, Benigno A et al (2007) Selective activation of 5-HT(2C) receptors stimulates GABA-ergic function in the rat substantia nigra pars reticulata: a combined in vivo electrophysiological and neurochemical study. Neuroscience 144(4):1523–1535

    Article  CAS  PubMed  Google Scholar 

  95. Delaville C, Chetrit J, Abdallah K, Morin S, Cardoit L, De Deurwaerdere P et al (2012a) Emerging dysfunctions consequent to combined monoaminergic depletions in parkinsonism. Neurobiol Dis 45(2):763–773. https://doi.org/10.1016/j.nbd.2011.10.023

    Article  CAS  PubMed  Google Scholar 

  96. Gongora-Alfaro JL, Hernandez-Lopez S, Flores-Hernandez J, Galarraga E (1997) Firing frequency modulation of substantia nigra reticulata neurons by 5-hydroxytryptamine. Neurosci Res 29(3):225–231

    Article  CAS  PubMed  Google Scholar 

  97. Rick CE, Stanford IM, Lacey MG (1995) Excitation of rat substantia nigra pars reticulata neurons by 5-hydroxytryptamine in vitro: evidence for a direct action mediated by 5-hydroxytryptamine2C receptors. Neuroscience 69(3):903–913

    Article  CAS  PubMed  Google Scholar 

  98. Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL (2005) 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology 49(8):1228–1234

    Article  CAS  PubMed  Google Scholar 

  99. Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci 16(23):7566–7573

    CAS  PubMed  Google Scholar 

  100. Ding S, Li L, Zhou FM (2013) Presynaptic serotonergic gating of the subthalamonigral glutamatergic projection. J Neurosci 33(11):4875–4885. https://doi.org/10.1523/JNEUROSCI.4111-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kelland MD, Freeman AS, Chiodo LA (1990) Serotonergic afferent regulation of the basic physiology and pharmacological responsiveness of nigrostriatal dopamine neurons. J Pharmacol Exp Ther 253(2):803–811

    CAS  PubMed  Google Scholar 

  102. Minabe Y, Emori K, Ashby CR Jr (1996) The depletion of brain serotonin levels by para-chlorophenylalanine administration significantly alters the activity of midbrain dopamine cells in rats: an extracellular single cell recording study. Synapse 22(1):46–53

    Article  CAS  PubMed  Google Scholar 

  103. Gervais J, Rouillard C (2000) Dorsal raphe stimulation differentially modulates dopaminergic neurons in the ventral tegmental area and substantia nigra. Synapse 35(4):281–291

    Article  CAS  PubMed  Google Scholar 

  104. Olijslagers JE, Werkman TR, McCreary AC, Siarey R, Kruse CG, Wadman WJ (2004) 5-HT2 receptors differentially modulate dopamine-mediated auto-inhibition in A9 and A10 midbrain areas of the rat. Neuropharmacology 46(4):504–510

    Article  CAS  PubMed  Google Scholar 

  105. Ugedo L, Grenhoff J, Svensson TH (1989) Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology 98(1):45–50

    Article  CAS  PubMed  Google Scholar 

  106. Di Giovanni G, De Deurwaerdere P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U (1999) Selective blockade of serotonin-2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91(2):587–597

    Article  PubMed  Google Scholar 

  107. Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdere P, Caccia S et al (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26(3):311–324. https://doi.org/10.1016/S0893-133X(01)00333-5

    Article  CAS  PubMed  Google Scholar 

  108. Shi WX, Nathaniel P, Bunney BS (1995) Ritanserin, a 5-HT2A/2C antagonist, reverses direct dopamine agonist-induced inhibition of midbrain dopamine neurons. J Pharmacol Exp Ther 274(2):735–740

    CAS  PubMed  Google Scholar 

  109. Sorensen SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK et al (1993) Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266(2):684–691

    CAS  PubMed  Google Scholar 

  110. Minabe Y, Hashimoto K, Watanabe KI, Ashby CR Jr (2001) Acute and repeated administration of the selective 5-HT(2A) receptor antagonist M100907 significantly alters the activity of midbrain dopamine neurons: an in vivo electrophysiological study. Synapse 40(2):102–112. https://doi.org/10.1002/syn.1031

  111. Delaville C, Navailles S, Benazzouz A (2012b) Effects of noradrenaline and serotonin depletions on the neuronal activity of globus pallidus and substantia nigra pars reticulata in experimental parkinsonism. Neuroscience 202:424–433. https://doi.org/10.1016/j.neuroscience.2011.11.024

    Article  CAS  PubMed  Google Scholar 

  112. Chen L, Yung KK, Chan YS, Yung WH (2008) 5-HT excites globus pallidus neurons by multiple receptor mechanisms. Neuroscience 151(2):439–451. https://doi.org/10.1016/j.neuroscience.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  113. Kita H, Chiken S, Tachibana Y, Nambu A (2007) Serotonin modulates pallidal neuronal activity in the awake monkey. J Neurosci 27(1):75–83. https://doi.org/10.1523/JNEUROSCI.4058-06.2007

    Article  CAS  PubMed  Google Scholar 

  114. Querejeta E, Oviedo-Chavez A, Araujo-Alvarez JM, Quinones-Cardenas AR, Delgado A (2005) In vivo effects of local activation and blockade of 5-HT1B receptors on globus pallidus neuronal spiking. Brain Res 1043(1–2):186–194. doi: S0006-8993(05)00342-2 [pii]. https://doi.org/10.1016/j.brainres.2005.02.055

    Article  CAS  PubMed  Google Scholar 

  115. Wang H, Chen XY, Chen WF, Xue Y, Wei L, Chen L (2013) Anticataleptic effects of 5-HT(1B) receptors in the globus pallidus. Neurosci Res 77(3):162–169. doi: S0168-0102(13)00199-5 [pii]. https://doi.org/10.1016/j.neures.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  116. Zhang SJ, Wang H, Xue Y, Yung WH, Chen L (2010) Behavioral and electrophysiological effects of 5-HT in globus pallidus of 6-hydroxydopamine lesioned rats. J Neurosci Res 88(7):1549–1556. https://doi.org/10.1002/jnr.22325.

    CAS  PubMed  Google Scholar 

  117. Hashimoto K, Kita H (2008) Serotonin activates presynaptic and postsynaptic receptors in rat globus pallidus. J Neurophysiol 99(4):1723–1732. https://doi.org/10.1152/jn.01143.2007

    Article  CAS  PubMed  Google Scholar 

  118. Bengtson CP, Lee DJ, Osborne PB (2004) Opposing electrophysiological actions of 5-HT on noncholinergic and cholinergic neurons in the rat ventral pallidum in vitro. J Neurophysiol 92(1):433–443. https://doi.org/10.1152/jn.00543.2003

    Article  CAS  PubMed  Google Scholar 

  119. Heidenreich BA, Napier TC (2000) Effects of serotonergic 5-HT1A and 5-HT1B ligands on ventral pallidal neuronal activity. Neuroreport 11(13):2849–2853

    Article  CAS  PubMed  Google Scholar 

  120. Aristieta A, Morera-Herreras T, Ruiz-Ortega JA, Miguelez C, Vidaurrazaga I, Arrue A et al (2013) Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration. Psychopharmacology 231:1913. https://doi.org/10.1007/s00213-013-3333-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Liu J, Chu YX, Zhang QJ, Wang S, Feng J, Li Q (2007) 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus alters neuronal activity of the subthalamic nucleus in normal and 6-hydroxydopamine-lesioned rats. Brain Res 1149:216–222. doi: S0006-8993(07)00485-4 [pii]. https://doi.org/10.1016/j.brainres.2007.02.052

    Article  CAS  PubMed  Google Scholar 

  122. Barwick VS, Jones DH, Richter JT, Hicks PB, Young KA (2000) Subthalamic nucleus microinjections of 5-HT2 receptor antagonists suppress stereotypy in rats. Neuroreport 11(2):267–270

    Article  CAS  PubMed  Google Scholar 

  123. Shen KZ, Johnson SW (2008) 5-HT inhibits synaptic transmission in rat subthalamic nucleus neurons in vitro. Neuroscience 151(4):1029–1033. https://doi.org/10.1016/j.neuroscience.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  124. Xiang Z, Wang L, Kitai ST (2005) Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 93(3):1145–1157

    Article  CAS  PubMed  Google Scholar 

  125. Zifa E, Fillion G (1992) 5-Hydroxytryptamine receptors. Pharmacol Rev 44(3):401–458

    CAS  PubMed  Google Scholar 

  126. Leslie RA, Moorman JM, Coulson A, Grahame-Smith DG (1993) Serotonin2/1C receptor activation causes a localized expression of the immediate-early gene c-fos in rat brain: evidence for involvement of dorsal raphe nucleus projection fibres. Neuroscience 53(2):457–463

    Article  CAS  PubMed  Google Scholar 

  127. Moorman JM, Leslie RA (1996) P-chloroamphetamine induces c-fos in rat brain: a study of serotonin2A/2C receptor function. Neuroscience 72(1):129–139

    Article  CAS  PubMed  Google Scholar 

  128. Rouillard C, Bovetto S, Gervais J, Richard D (1996) Fenfluramine-induced activation of the immediate-early gene c-fos in the striatum: possible interaction between serotonin and dopamine. Brain Res Mol Brain Res 37(1–2):105–115

    Article  CAS  PubMed  Google Scholar 

  129. Tremblay PO, Gervais J, Rouillard C (1998) Modification of haloperidol-induced pattern of c-fos expression by serotonin agonists. Eur J Neurosci 10(11):3546–3555

    Article  CAS  PubMed  Google Scholar 

  130. Sebens JB, Kuipers SD, Koch T, Ter Horst GJ, Korf J (2000) Limited participation of 5-HT(1A) and 5-HT(2A/2C) receptors in the clozapine-induced Fos-protein expression in rat forebrain regions. Eur J Pharmacol 408(1):11–17

    Article  CAS  PubMed  Google Scholar 

  131. Beyeler A, Kadiri N, Navailles S, Boujema MB, Gonon F, Moine CL et al (2010) Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia. Neuroscience 169(1):158–170

    Article  CAS  PubMed  Google Scholar 

  132. De Deurwaerdere P, Chesselet MF (2000) Nigrostriatal lesions alter oral dyskinesia and c-Fos expression induced by the serotonin agonist 1-(m-chlorophenyl)piperazine in adult rats. J Neurosci 20(13):5170–5178

    PubMed  Google Scholar 

  133. De Deurwaerdere P, Lagiere M, Bosc M, Navailles S (2013) Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res 230(4):477–511. https://doi.org/10.1007/s00221-013-3508-2

    Article  PubMed  CAS  Google Scholar 

  134. Stark JA, Davies KE, Williams SR, Luckman SM (2006) Functional magnetic resonance imaging and c-Fos mapping in rats following an anorectic dose of m-chlorophenylpiperazine. NeuroImage 31(3):1228–1237

    Article  PubMed  Google Scholar 

  135. Lucas JJ, Segu L, Hen R (1997b) 5-Hydroxytryptamine1B receptors modulate the effect of cocaine on c-fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B/1D antagonist GR127935. Mol Pharmacol 51(5):755–763

    Article  CAS  PubMed  Google Scholar 

  136. Navailles S, Lagiere M, Le Moine C, De Deurwaerdere P (2013) Role of 5-HT2C receptors in the enhancement of c-Fos expression induced by a 5-HT2B/2C inverse agonist and 5-HT 2 agonists in the rat basal ganglia. Exp Brain Res 230(4):525–535. https://doi.org/10.1007/s00221-013-3562-9

    Article  CAS  PubMed  Google Scholar 

  137. Tilakaratne N, Friedman E (1996) Genomic responses to 5-HT1A or 5-HT2A/2C receptor activation is differentially regulated in four regions of rat brain. Eur J Pharmacol 307(2):211–217

    Article  CAS  PubMed  Google Scholar 

  138. Gresch PJ, Strickland LV, Sanders-Bush E (2002) Lysergic acid diethylamide-induced Fos expression in rat brain: role of serotonin-2A receptors. Neuroscience 114(3):707–713

    Article  CAS  PubMed  Google Scholar 

  139. Kadiri N, Lagiere M, Le Moine C, Millan MJ, De Deurwaerdere P, Navailles S (2012) Diverse effects of 5-HT2C receptor blocking agents on c-Fos expression in the rat basal ganglia. Eur J Pharmacol 689(1–3):8–16. https://doi.org/10.1016/j.ejphar.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  140. De Deurwaerdere P, Le Moine C, Chesselet MF (2010) Selective blockade of serotonin 2C receptor enhances Fos expression specifically in the striatum and the subthalamic nucleus within the basal ganglia. Neurosci Lett 469(2):251–255

    Article  PubMed  CAS  Google Scholar 

  141. Habara T, Hamamura T, Miki M, Ohashi K, Kuroda S (2001) M100907, a selective 5-HT(2A) receptor antagonist, attenuates phencyclidine-induced Fos expression in discrete regions of rat brain. Eur J Pharmacol 417(3):189–194

    Article  CAS  PubMed  Google Scholar 

  142. Wan W, Ennulat DJ, Cohen BM (1995) Acute administration of typical and atypical antipsychotic drugs induces distinctive patterns of Fos expression in the rat forebrain. Brain Res 688(1–2):95–104

    Article  CAS  PubMed  Google Scholar 

  143. Bhat RV, Baraban JM (1993) Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems. J Pharmacol Exp Ther 267(1):496–505

    CAS  PubMed  Google Scholar 

  144. Pockros LA, Pentkowski NS, Conway SM, Ullman TE, Zwick KR, Neisewander JL (2012) 5-HT(2A) receptor blockade and 5-HT(2C) receptor activation interact to reduce cocaine hyperlocomotion and Fos protein expression in the caudate-putamen. Synapse 66(12):989–1001. https://doi.org/10.1002/syn.21592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Burton CL, Rizos Z, Diwan M, Nobrega JN, Fletcher PJ (2013) Antagonizing 5-HT(2)a receptors with M100907 and stimulating 5-HT(2)C receptors with Ro60-0175 blocks cocaine-induced locomotion and zif268 mRNA expression in Sprague-Dawley rats. Behav Brain Res 240:171–181. https://doi.org/10.1016/j.bbr.2012.11.030

    Article  CAS  PubMed  Google Scholar 

  146. Genova LM, Hyman SE (1998) 5-HT3 receptor activation is required for induction of striatal c-Fos and phosphorylation of ATF-1 by amphetamine. Synapse 30(1):71–78. https://doi.org/10.1002/(sici)1098-2396(199809)30:1<71::aid-syn9>3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  147. Gardier AM, Moratalla R, Cuellar B, Sacerdote M, Guibert B, Lebrec H et al (2000) Interaction between the serotoninergic and dopaminergic systems in d-fenfluramine-induced activation of c-fos and jun B genes in rat striatal neurons. J Neurochem 74(4):1363–1373

    Article  CAS  PubMed  Google Scholar 

  148. Guerra MJ, Liste I, Labandeira-Garcia JL (1998) Interaction between the serotonergic, dopaminergic, and glutamatergic systems in fenfluramine-induced Fos expression in striatal neurons. Synapse 28(1):71–82. https://doi.org/10.1002/(sici)1098-2396(199801)28:1<71::aid-syn9>3.0.co;2-9

    Article  CAS  PubMed  Google Scholar 

  149. Javed A, Van de Kar LD, Gray TS (1998) The 5-HT1A and 5-HT2A/2C receptor antagonists WAY-100635 and ritanserin do not attenuate D-fenfluramine-induced fos expression in the brain. Brain Res 791(1–2):67–74

    Article  CAS  PubMed  Google Scholar 

  150. Meltzer HY (1993) Serotonin receptors and antipsychotic drug action. Psychopharmacol Ser 10:70–81

    CAS  PubMed  Google Scholar 

  151. Robertson GS, Fibiger HC (1992) Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine. Neuroscience 46(2):315–328

    Article  CAS  PubMed  Google Scholar 

  152. Ishibashi T, Tagashira R, Nakamura M, Noguchi H, Ohno Y (1999) Effects of perospirone, a novel 5-HT2 and D2 receptor antagonist, on Fos protein expression in the rat forebrain. Pharmacol Biochem Behav 63(4):535–541

    Article  CAS  PubMed  Google Scholar 

  153. Oka T, Hamamura T, Lee Y, Miyata S, Habara T, Endo S et al (2004) Atypical properties of several classes of antipsychotic drugs on the basis of differential induction of Fos-like immunoreactivity in the rat brain. Life Sci 76(2):225–237. https://doi.org/10.1016/j.lfs.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  154. Zhao C, Li M (2010) C-Fos identification of neuroanatomical sites associated with haloperidol and clozapine disruption of maternal behavior in the rat. Neuroscience 166(4):1043–1055. https://doi.org/10.1016/j.neuroscience.2010.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Creed-Carson M, Oraha A, Nobrega JN (2011) Effects of 5-HT(2A) and 5-HT(2C) receptor antagonists on acute and chronic dyskinetic effects induced by haloperidol in rats. Behav Brain Res 219(2):273–279. https://doi.org/10.1016/j.bbr.2011.01.025

    Article  CAS  PubMed  Google Scholar 

  156. Muramatsu M, Tamaki-Ohashi J, Usuki C, Araki H, Chaki S, Aihara H (1988) 5-HT2 antagonists and minaprine block the 5-HT-induced inhibition of dopamine release from rat brain striatal slices. Eur J Pharmacol 153(1):89–95

    Article  CAS  PubMed  Google Scholar 

  157. Navailles S, De Deurwaerdere P (2011) Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology 213(2–3):213–242

    Article  CAS  PubMed  Google Scholar 

  158. Gobert A, Millan MJ (1999) Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38(2):315–317

    Article  CAS  PubMed  Google Scholar 

  159. Ichikawa J, Dai J, Meltzer HY (2001) DOI, a 5-HT2A/2C receptor agonist, attenuates clozapine-induced cortical dopamine release. Brain Res 907(1–2):151–155

    Article  CAS  PubMed  Google Scholar 

  160. Pehek EA, McFarlane HG, Maguschak K, Price B, Pluto CP (2001) M100,907, a selective 5-HT(2A) antagonist, attenuates dopamine release in the rat medial prefrontal cortex. Brain Res 888(1):51–59

    Article  CAS  PubMed  Google Scholar 

  161. Pehek EA, Nocjar C, Roth BL, Byrd TA, Mabrouk OS (2006) Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology 31(2):265–277. https://doi.org/10.1038/sj.npp.1300819

    Article  CAS  PubMed  Google Scholar 

  162. Gudelsky GA, Yamamoto BK, Nash JF (1994) Potentiation of 3,4-methylenedioxymethamphetamine-induced dopamine release and serotonin neurotoxicity by 5-HT2 receptor agonists. Eur J Pharmacol 264(3):325–330

    Article  CAS  PubMed  Google Scholar 

  163. Ichikawa J, Meltzer HY (1995) DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res 698(1–2):204–208

    Article  CAS  PubMed  Google Scholar 

  164. Willins DL, Meltzer HY (1998) Serotonin 5-HT2C agonists selectively inhibit morphine-induced dopamine efflux in the nucleus accumbens. Brain Res 781(1–2):291–299

    Article  CAS  PubMed  Google Scholar 

  165. Bonaccorso S, Meltzer HY, Li Z, Dai J, Alboszta AR, Ichikawa J (2002) SR46349-B, a 5-HT(2A/2C) receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology 27(3):430–441. https://doi.org/10.1016/S0893-133X(02)00311-1

    Article  CAS  PubMed  Google Scholar 

  166. De Deurwaerdere P, Spampinato U (1999) Role of serotonin(2A) and serotonin(2B/2C) receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73(3):1033–1042

    Article  PubMed  Google Scholar 

  167. Liegeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947(2):157–165

    Article  CAS  PubMed  Google Scholar 

  168. Lucas G, De Deurwaerdere P, Caccia S, Umberto S (2000) The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT(2A) and 5-HT(2C) receptor subtypes and significance of the haloperidol dose used. Neuropharmacology 39(6):1053–1063

    Article  CAS  PubMed  Google Scholar 

  169. Schmidt CJ, Black CK, Taylor VL, Fadayel GM, Humphreys TM, Nieduzak TR et al (1992a) The 5-HT2 receptor antagonist, MDL 28,133A, disrupts the serotonergic-dopaminergic interaction mediating the neurochemical effects of 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 220(2–3):151–159

    Article  CAS  PubMed  Google Scholar 

  170. Schmidt CJ, Fadayel GM, Sullivan CK, Taylor VL (1992b) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223(1):65–74

    Article  CAS  PubMed  Google Scholar 

  171. Schmidt CJ, Sullivan CK, Fadayel GM (1994) Blockade of striatal 5-hydroxytryptamine2 receptors reduces the increase in extracellular concentrations of dopamine produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine. J Neurochem 62(4):1382–1389

    Article  CAS  PubMed  Google Scholar 

  172. Dewey SL, Smith GS, Logan J, Alexoff D, Ding YS, King P et al (1995) Serotonergic modulation of striatal dopamine measured with positron emission tomography (PET) and in vivo microdialysis. J Neurosci 15(1 Pt 2):821–829

    CAS  PubMed  Google Scholar 

  173. Palfreyman MG, Schmidt CJ, Sorensen SM, Dudley MW, Kehne JH, Moser P et al (1993) Electrophysiological, biochemical and behavioral evidence for 5-HT2 and 5-HT3 mediated control of dopaminergic function. Psychopharmacology 112(1 Suppl):S60–S67

    Article  CAS  PubMed  Google Scholar 

  174. Schmidt CJ, Fadayel GM (1996) Regional effects of MK-801 on dopamine release: effects of competitive NMDA or 5-HT2A receptor blockade. J Pharmacol Exp Ther 277(3):1541–1549

    CAS  PubMed  Google Scholar 

  175. Waldmeier PC, Delini-Stula AA (1979) Serotonin--dopamine interactions in the nigrostriatal system. Eur J Pharmacol 55(4):363–373

    Article  CAS  PubMed  Google Scholar 

  176. Nash JF (1990) Ketanserin pretreatment attenuates MDMA-induced dopamine release in the striatum as measured by in vivo microdialysis. Life Sci 47(26):2401–2408

    Article  CAS  PubMed  Google Scholar 

  177. Schmidt CJ, Abbate GM, Black CK, Taylor VL (1990) Selective 5-hydroxytryptamine2 receptor antagonists protect against the neurotoxicity of methylenedioxymethamphetamine in rats. J Pharmacol Exp Ther 255(2):478–483

    CAS  PubMed  Google Scholar 

  178. Schmidt CJ, Taylor VL, Abbate GM, Nieduzak TR (1991) 5-HT2 antagonists stereoselectively prevent the neurotoxicity of 3,4-methylenedioxymethamphetamine by blocking the acute stimulation of dopamine synthesis: reversal by L-dopa. J Pharmacol Exp Ther 256(1):230–235

    CAS  PubMed  Google Scholar 

  179. Auclair A, Blanc G, Glowinski J, Tassin JP (2004) Role of serotonin 2A receptors in the D-amphetamine-induced release of dopamine: comparison with previous data on alpha1b-adrenergic receptors. J Neurochem 91(2):318–326. https://doi.org/10.1111/j.1471-4159.2004.02714.x

    Article  CAS  PubMed  Google Scholar 

  180. Egerton A, Ahmad R, Hirani E, Grasby PM (2008) Modulation of striatal dopamine release by 5-HT2A and 5-HT2C receptor antagonists: [11C]raclopride PET studies in the rat. Psychopharmacology 200(4):487–496. https://doi.org/10.1007/s00213-008-1226-4

    Article  CAS  PubMed  Google Scholar 

  181. Ichikawa J, Meltzer HY (1992) Amperozide, a novel antipsychotic drug, inhibits the ability of d-amphetamine to increase dopamine release in vivo in rat striatum and nucleus accumbens. J Neurochem 58(6):2285–2291

    Article  CAS  PubMed  Google Scholar 

  182. Murnane KS, Andersen ML, Rice KC, Howell LL (2013a) Selective serotonin 2A receptor antagonism attenuates the effects of amphetamine on arousal and dopamine overflow in non-human primates. J Sleep Res 22(5):581–588. https://doi.org/10.1111/jsr.12045

    Article  PubMed  Google Scholar 

  183. Balcioglu A, Wurtman RJ (1998) Dexfenfluramine enhances striatal dopamine release in conscious rats via a serotoninergic mechanism. J Pharmacol Exp Ther 284(3):991–997

    CAS  PubMed  Google Scholar 

  184. Murnane KS, Winschel J, Schmidt KT, Stewart LM, Rose SJ, Cheng K et al (2013b) Serotonin 2A receptors differentially contribute to abuse-related effects of cocaine and cocaine-induced nigrostriatal and mesolimbic dopamine overflow in nonhuman primates. J Neurosci 33(33):13367–13374. https://doi.org/10.1523/jneurosci.1437-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kuroki T, Meltzer HY, Ichikawa J (2003) 5-HT 2A receptor stimulation by DOI, a 5-HT 2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 972(1–2):216–221

    Article  CAS  PubMed  Google Scholar 

  186. Li Z, Ichikawa J, Huang M, Prus AJ, Dai J, Meltzer HY (2005) ACP-103, a 5-HT2A/2C inverse agonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Psychopharmacology 183(2):144–153. https://doi.org/10.1007/s00213-005-0170-9

    Article  CAS  PubMed  Google Scholar 

  187. Kankaanpaa A, Meririnne E, Lillsunde P, Seppala T (1998) The acute effects of amphetamine derivatives on extracellular serotonin and dopamine levels in rat nucleus accumbens. Pharmacol Biochem Behav 59(4):1003–1009

    Article  CAS  PubMed  Google Scholar 

  188. Yamamoto BK, Nash JF, Gudelsky GA (1995) Modulation of methylenedioxymethamphetamine-induced striatal dopamine release by the interaction between serotonin and gamma-aminobutyric acid in the substantia nigra. J Pharmacol Exp Ther 273(3):1063–1070

    CAS  PubMed  Google Scholar 

  189. Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet J et al (1999) Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat. Eur J Neurosci 11(12):4419–4432

    Article  CAS  PubMed  Google Scholar 

  190. Sorensen SM, Humphreys TM, Taylor VL, Schmidt CJ (1992) 5-HT2 receptor antagonists reverse amphetamine-induced slowing of dopaminergic neurons by interfering with stimulated dopamine synthesis. J Pharmacol Exp Ther 260(2):872–878

    CAS  PubMed  Google Scholar 

  191. Lucas G, Spampinato U (2000) Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74(2):693–701

    Article  CAS  PubMed  Google Scholar 

  192. Nash JF, Brodkin J (1991) Microdialysis studies on 3,4-methylenedioxymethamphetamine-induced dopamine release: effect of dopamine uptake inhibitors. J Pharmacol Exp Ther 259(2):820–825

    CAS  PubMed  Google Scholar 

  193. Koch S, Galloway MP (1997) MDMA induced dopamine release in vivo: role of endogenous serotonin. J Neural Transm 104(2–3):135–146

    Article  CAS  PubMed  Google Scholar 

  194. De Deurwaerdere P, Bonhomme N, Le Moal M, Spampinato U (1995) D-fenfluramine increases striatal extracellular dopamine in vivo independently of serotonergic terminals or dopamine uptake sites. J Neurochem 65(3):1100–1108

    Article  PubMed  Google Scholar 

  195. Benloucif S, Galloway MP (1991) Facilitation of dopamine release in vivo by serotonin agonists: studies with microdialysis. Eur J Pharmacol 200(1):1–8

    Article  CAS  PubMed  Google Scholar 

  196. Benloucif S, Keegan MJ, Galloway MP (1993) Serotonin-facilitated dopamine release in vivo: pharmacological characterization. J Pharmacol Exp Ther 265(1):373–377

    CAS  PubMed  Google Scholar 

  197. Bonhomme N, De Deurwaerdere P, Le Moal M, Spampinato U (1995) Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat. Neuropharmacology 34(3):269–279

    Article  CAS  PubMed  Google Scholar 

  198. de Belleroche JS, Bradford HF (1980) Presynaptic control of the synthesis and release of dopamine from striatal synaptosomes: a comparison between the effects of 5-hydroxytryptamine, acetylcholine, and glutamate. J Neurochem 35(5):1227–1234

    Article  PubMed  Google Scholar 

  199. De Deurwaerdere P, L’Hirondel M, Bonhomme N, Lucas G, Cheramy A, Spampinato U (1997) Serotonin stimulation of 5-HT4 receptors indirectly enhances in vivo dopamine release in the rat striatum. J Neurochem 68(1):195–203

    Article  PubMed  Google Scholar 

  200. Jacocks HM III, Cox BM (1992) Serotonin-stimulated release of [3H]dopamine via reversal of the dopamine transporter in rat striatum and nucleus accumbens: a comparison with release elicited by potassium, N-methyl-D-aspartic acid, glutamic acid and D-amphetamine. J Pharmacol Exp Ther 262(1):356–364

    PubMed  Google Scholar 

  201. Yan QS (2000) Activation of 5-HT2A/2C receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull 51(1):75–81

    Article  CAS  PubMed  Google Scholar 

  202. Bowers BJ, Henry MB, Thielen RJ, McBride WJ (2000) Serotonin 5-HT(2) receptor stimulation of dopamine release in the posterior but not anterior nucleus accumbens of the rat. J Neurochem 75(4):1625–1633

    Article  CAS  PubMed  Google Scholar 

  203. Ng NK, Lee HS, Wong PT (1999) Regulation of striatal dopamine release through 5-HT1 and 5-HT2 receptors. J Neurosci Res 55(5):600–607

    Article  CAS  PubMed  Google Scholar 

  204. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382

    CAS  PubMed  Google Scholar 

  205. Bankson MG, Yamamoto BK (2004) Serotonin-GABA interactions modulate MDMA-induced mesolimbic dopamine release. J Neurochem 91(4):852–859. https://doi.org/10.1111/j.1471-4159.2004.02763.x

    Article  CAS  PubMed  Google Scholar 

  206. Mijnster MJ, Galis-de Graaf Y, Voorn P (1998) Serotonergic regulation of neuropeptide and glutamic acid decarboxylase mRNA levels in the rat striatum and globus pallidus: studies with fluoxetine and DOI. Brain Res Mol Brain Res 54(1):64–73

    Article  CAS  PubMed  Google Scholar 

  207. Hensler JG, Artigas F, Bortolozzi A, Daws LC, De Deurwaerdere P, Milan L et al (2013) Catecholamine/serotonin interactions: systems thinking for brain function and disease. Adv Pharmacol 68:167–197. https://doi.org/10.1016/B978-0-12-411512-5.00009-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bortolozzi A, Diaz-Mataix L, Scorza MC, Celada P, Artigas F (2005) The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 95(6):1597–1607. https://doi.org/10.1111/j.1471-4159.2005.03485.x

    Article  CAS  PubMed  Google Scholar 

  209. Mocci G, Jimenez-Sanchez L, Adell A, Cortes R, Artigas F (2014) Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens potential relevance for atypical antipsychotic action. Neuropharmacology 79:49–58. https://doi.org/10.1016/j.neuropharm.2013.10.021

    Article  CAS  PubMed  Google Scholar 

  210. Abarca J, Bustos G (1999) Differential regulation of glutamate, aspartate and gamma-amino-butyrate release by N-methyl-D-aspartate receptors in rat striatum after partial and extensive lesions to the nigro-striatal dopamine pathway. Neurochem Int 35(1):19–33

    Article  CAS  PubMed  Google Scholar 

  211. De Deurwaerdere P, Di Giovanni G, Millan MJ (2017) Expanding the repertoire of L-DOPA’s actions: a comprehensive review of its functional neurochemistry. Prog Neurobiol 151:57. https://doi.org/10.1016/j.pneurobio.2016.07.002

    Article  PubMed  CAS  Google Scholar 

  212. Marti M, Guerrini R, Beani L, Bianchi C, Morari M (2002) Nociceptin/orphanin FQ receptors modulate glutamate extracellular levels in the substantia nigra pars reticulata. A microdialysis study in the awake freely moving rat. Neuroscience 112(1):153–160

    Article  CAS  PubMed  Google Scholar 

  213. Ferguson MC, Nayyar T, Ansah TA (2014) Reverse microdialysis of a 5-HT2A receptor antagonist alters extracellular glutamate levels in the striatum of the MPTP mouse model of Parkinson’s disease. Neurochem Int 71:36–46. https://doi.org/10.1016/j.neuint.2014.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Robinson S, Freeman P, Moore C, Touchon JC, Krentz L, Meshul CK (2003) Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function. Exp Neurol 180(1):74–87

    Article  PubMed  CAS  Google Scholar 

  215. Garratt JC, Kidd EJ, Wright IK, Marsden CA (1991) Inhibition of 5-hydroxytryptamine neuronal activity by the 5-HT agonist, DOI. Eur J Pharmacol 199(3):349–355

    Article  CAS  PubMed  Google Scholar 

  216. Kidd EJ, Garratt JC, Marsden CA (1991) Effects of repeated treatment with 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) on the autoregulatory control of dorsal raphe 5-HT neuronal firing and cortical 5-HT release. Eur J Pharmacol 200(1):131–139

    Article  CAS  PubMed  Google Scholar 

  217. Wright IK, Garratt JC, Marsden CA (1990) Effects of a selective 5-HT2 agonist, DOI, on 5-HT neuronal firing in the dorsal raphe nucleus and 5-HT release and metabolism in the frontal cortex. Br J Pharmacol 99(2):221–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G et al (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21(24):9856–9866

    CAS  PubMed  Google Scholar 

  219. Puig MV, Celada P, Diaz-Mataix L, Artigas F (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 13(8):870–882

    Article  PubMed  Google Scholar 

  220. Walker PD, Riley LA, Hart RP, Jonakait GM (1991) Serotonin regulation of neostriatal tachykinins following neonatal 6-hydroxydopamine lesions. Brain Res 557(1–2):31–36

    Article  CAS  PubMed  Google Scholar 

  221. Basura GJ, Walker PD (2001) Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion. Brain Res Mol Brain Res 92(1–2):66–77

    Article  CAS  PubMed  Google Scholar 

  222. Gresch PJ, Walker PD (1999b) Serotonin-2 receptor stimulation normalizes striatal preprotachykinin messenger RNA in an animal model of Parkinson's disease. Neuroscience 93(3):831–841

    Article  CAS  PubMed  Google Scholar 

  223. Walker PD, Capodilupo JG, Wolf WA, Carlock LR (1996) Preprotachykinin and preproenkephalin mRNA expression within striatal subregions in response to altered serotonin transmission. Brain Res 732(1–2):25–35

    Article  CAS  PubMed  Google Scholar 

  224. Gresch PJ, Walker PD (1999a) Acute p-chloroamphetamine increases striatal preprotachykinin mRNA: role of the serotonin 2A/2C receptor. Brain Res Mol Brain Res 67(1):190–193

    Article  CAS  PubMed  Google Scholar 

  225. Radja F, Descarries L, Dewar KM, Reader TA (1993) Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res 606(2):273–285

    Article  CAS  PubMed  Google Scholar 

  226. Laprade N, Radja F, Reader TA, Soghomonian JJ (1996) Dopamine receptor agonists regulate levels of the serotonin 5-HT2A receptor and its mRNA in a subpopulation of rat striatal neurons. J Neurosci 16(11):3727–3736

    CAS  PubMed  Google Scholar 

  227. Numan S, Lundgren KH, Wright DE, Herman JP, Seroogy KB (1995) Increased expression of 5HT2 receptor mRNA in rat striatum following 6-OHDA lesions of the adult nigrostriatal pathway. Brain Res Mol Brain Res 29(2):391–396

    Article  CAS  PubMed  Google Scholar 

  228. Li L, Qiu G, Ding S, Zhou FM (2013) Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice. Brain Res 1491:236–250. https://doi.org/10.1016/j.brainres.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  229. Navailles S, De Deurwaerdere P (2012a) Contribution of serotonergic transmission to the motor and cognitive effects of high-frequency stimulation of the subthalamic nucleus or levodopa in Parkinson’s disease. Mol Neurobiol 45(1):173–185. https://doi.org/10.1007/s12035-011-8230-0

    Article  CAS  PubMed  Google Scholar 

  230. Jorgensen CV, Jacobsen JP, Caron MG, Klein AB, Knudsen GM, Mikkelsen JD (2013) Cerebral 5-HT2A receptor binding, but not mGluR2, is increased in tryptophan hydroxylase 2 decrease-of-function mice. Neurosci Lett 555:118–122. https://doi.org/10.1016/j.neulet.2013.08.073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Morin N, Morissette M, Gregoire L, Di Paolo T (2015) Effect of a chronic treatment with an mGlu5 receptor antagonist on brain serotonin markers in parkinsonian monkeys. Prog Neuro-Psychopharmacol Biol Psychiatry 56:27–38. https://doi.org/10.1016/j.pnpbp.2014.07.006

    Article  CAS  Google Scholar 

  232. Li Y, Huang XF, Deng C, Meyer B, Wu A, Yu Y et al (2010) Alterations in 5-HT2A receptor binding in various brain regions among 6-hydroxydopamine-induced parkinsonian rats. Synapse 64(3):224–230. https://doi.org/10.1002/syn.20722

    Article  CAS  PubMed  Google Scholar 

  233. Lopez-Gimenez JF, Villazon M, Brea J, Loza MI, Palacios JM, Mengod G et al (2001b) Multiple conformations of native and recombinant human 5-hydroxytryptamine(2a) receptors are labeled by agonists and discriminated by antagonists. Mol Pharmacol 60(4):690–699

    CAS  PubMed  Google Scholar 

  234. Darchen F, Scherman D, Laduron PM, Henry JP (1988) Ketanserin binds to the monoamine transporter of chromaffin granules and of synaptic vesicles. Mol Pharmacol 33(6):672–677

    CAS  PubMed  Google Scholar 

  235. Leysen JE, Eens A, Gommeren W, van Gompel P, Wynants J, Janssen PA (1988) Identification of nonserotonergic [3H]ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin- and tetrabenazine-like drugs. J Pharmacol Exp Ther 244(1):310–321

    CAS  PubMed  Google Scholar 

  236. Roth BL, McLean S, Zhu XZ, Chuang DM (1987) Characterization of two [3H]ketanserin recognition sites in rat striatum. J Neurochem 49(6):1833–1838

    Article  CAS  PubMed  Google Scholar 

  237. Burnet PW, Chen CP, McGowan S, Franklin M, Harrison PJ (1996) The effects of clozapine and haloperidol on serotonin-1A, −2A and -2C receptor gene expression and serotonin metabolism in the rat forebrain. Neuroscience 73(2):531–540

    Article  CAS  PubMed  Google Scholar 

  238. Melse M, Tan SK, Temel Y, van Kroonenburgh MJ, Leentjens AF (2014) Changes in 5-HT2A receptor expression in untreated, de novo patients with Parkinson’s disease. J Parkinsons Dis 4(2):283–287. https://doi.org/10.3233/jpd-130300

    PubMed  Google Scholar 

  239. Navailles S, De Deurwaerdere P (2012b) Imbalanced dopaminergic transmission mediated by serotonergic neurons in L-DOPA-induced dyskinesia. Parkinsons Dis 2012:323686. https://doi.org/10.1155/2012/323686

    PubMed  Google Scholar 

  240. Charron A, Hage CE, Servonnet A, Samaha AN (2015) 5-HT2 receptors modulate the expression of antipsychotic-induced dopamine supersensitivity. Eur Neuropsychopharmacol 25(12):2381–2393. https://doi.org/10.1016/j.euroneuro.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  241. Huang XF, Tan YY, Huang X, Wang Q (2007) Effect of chronic treatment with clozapine and haloperidol on 5-HT(2A and 2C) receptor mRNA expression in the rat brain. Neurosci Res 59(3):314–321. https://doi.org/10.1016/j.neures.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  242. Huang XF, Han M, Huang X, Zavitsanou K, Deng C (2006) Olanzapine differentially affects 5-HT2Aand2C receptor mRNA expression in the rat brain. Behav Brain Res 171(2):355–362. https://doi.org/10.1016/j.bbr.2006.03.040

    Article  CAS  PubMed  Google Scholar 

  243. Carli M, Invernizzi RW (2014) Serotoninergic and dopaminergic modulation of cortico-striatal circuit in executive and attention deficits induced by NMDA receptor hypofunction in the 5-choice serial reaction time task. Front Neural Circuits 8:58. https://doi.org/10.3389/fncir.2014.00058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Adams KH, Hansen ES, Pinborg LH, Hasselbalch SG, Svarer C, Holm S et al (2005) Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding in the caudate nuclei. Int J Neuropsychopharmacol 8(3):391–401. https://doi.org/10.1017/s1461145705005055

    Article  CAS  PubMed  Google Scholar 

  245. Perani D, Garibotto V, Gorini A, Moresco RM, Henin M, Panzacchi A et al (2008) In vivo PET study of 5HT(2A) serotonin and D(2) dopamine dysfunction in drug-naive obsessive-compulsive disorder. NeuroImage 42(1):306–314. https://doi.org/10.1016/j.neuroimage.2008.04.233

    Article  PubMed  Google Scholar 

  246. Simpson HB, Slifstein M, Bender J Jr, Xu X, Hackett E, Maher MJ et al (2011) Serotonin 2A receptors in obsessive-compulsive disorder: a positron emission tomography study with [11C]MDL 100907. Biol Psychiatry 70(9):897–904. https://doi.org/10.1016/j.biopsych.2011.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Selvaraj S, Arnone D, Cappai A, Howes O (2014) Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 45:233–245. https://doi.org/10.1016/j.neubiorev.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  248. Herrick-Davis K (2013) Functional significance of serotonin receptor dimerization. Exp Brain Res 230(4):375–386. https://doi.org/10.1007/s00221-013-3622-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Teitler M, Herrick-Davis K (2014) Determining the oligomer number of native GPCR using florescence correlation spectroscopy and drug-induced inactivation-reactivation. Curr Pharm Biotechnol 15(10):927–937

    Article  CAS  PubMed  Google Scholar 

  250. Ciruela F, Vallano A, Arnau JM, Sanchez S, Borroto-Escuela DO, Agnati LF et al (2010) G protein-coupled receptor oligomerization for what? J Recept Signal Transduct Res 30(5):322–330. https://doi.org/10.3109/10799893.2010.508166

    Article  CAS  PubMed  Google Scholar 

  251. Borroto-Escuela DO, Romero-Fernandez W, Tarakanov AO, Marcellino D, Ciruela F, Agnati LF et al (2010) Dopamine D2 and 5-hydroxytryptamine 5-HT((2)a) receptors assemble into functionally interacting heteromers. Biochem Biophys Res Commun 401(4):605–610. https://doi.org/10.1016/j.bbrc.2010.09.110

    Article  CAS  PubMed  Google Scholar 

  252. Borroto-Escuela DO, Romero-Fernandez W, Narvaez M, Oflijan J, Agnati LF, Fuxe K (2014) Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes. Biochem Biophys Res Commun 443(1):278–284. https://doi.org/10.1016/j.bbrc.2013.11.104

    Article  CAS  PubMed  Google Scholar 

  253. Fuxe K, Borroto-Escuela DO, Tarakanov AO, Romero-Fernandez W, Ferraro L, Tanganelli S et al (2014) Dopamine D2 heteroreceptor complexes and their receptor-receptor interactions in ventral striatum: novel targets for antipsychotic drugs. Prog Brain Res 211:113–139. https://doi.org/10.1016/b978-0-444-63425-2.00005-2

    Article  CAS  PubMed  Google Scholar 

  254. Le Moine C, Bloch B (1991) Rat striatal and mesencephalic neurons contain the long isoform of the D2 dopamine receptor mRNA. Brain Res Mol Brain Res 10(4):283–289

    Article  PubMed  Google Scholar 

  255. Le Moine C, Normand E, Bloch B (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci U S A 88(10):4205–4209

    Article  PubMed  PubMed Central  Google Scholar 

  256. Aznar S, Hervig Mel S (2016) The 5-HT2A serotonin receptor in executive function: implications for neuropsychiatric and neurodegenerative diseases. Neurosci Biobehav Rev 64:63–82. https://doi.org/10.1016/j.neubiorev.2016.02.008

    Article  CAS  PubMed  Google Scholar 

  257. Zhang G, Stackman RW Jr (2015) The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6:225. https://doi.org/10.3389/fphar.2015.00225

    PubMed  PubMed Central  Google Scholar 

  258. Barre A, Berthoux C, De Bundel D, Valjent E, Bockaert J, Marin P et al (2016) Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning. Proc Natl Acad Sci U S A 113(10):E1382–E1391. https://doi.org/10.1073/pnas.1525586113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. James TA, Starr MS (1980) Rotational behaviour elicited by 5-HT in the rat: evidence for an inhibitory role of 5-HT in the substantia nigra and corpus striatum. J Pharm Pharmacol 32(3):196–200

    Article  CAS  PubMed  Google Scholar 

  260. Filip M, Nowak E, Papla I (2001) On the role of serotonin2A/2C receptors in the sensitization to cocaine. J Physiol Pharmacol 52(3):471–481

    CAS  PubMed  Google Scholar 

  261. Kehne JH, Ketteler HJ, McCloskey TC, Sullivan CK, Dudley MW, Schmidt CJ (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacology 15(2):116–124. https://doi.org/10.1016/0893-133X(95)00160-F

    Article  CAS  PubMed  Google Scholar 

  262. McMahon LR, Cunningham KA (2001) Antagonism of 5-hydroxytryptamine(2a) receptors attenuates the behavioral effects of cocaine in rats. J Pharmacol Exp Ther 297(1):357–363

    CAS  PubMed  Google Scholar 

  263. O’Neill MF, Heron-Maxwell CL, Shaw G (1999) 5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine, and MK-801 but not D1 agonist C-APB. Pharmacol Biochem Behav 63(2):237–243

    Article  PubMed  Google Scholar 

  264. Filip M, Bubar MJ, Cunningham KA (2004) Contribution of serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 receptor subtypes to the hyperlocomotor effects of cocaine: acute and chronic pharmacological analyses. J Pharmacol Exp Ther 310(3):1246–1254. https://doi.org/10.1124/jpet.104.068841

    Article  CAS  PubMed  Google Scholar 

  265. Howell LL, Cunningham KA (2015) Serotonin 5-HT2 receptor interactions with dopamine function: implications for therapeutics in cocaine use disorder. Pharmacol Rev 67(1):176–197. https://doi.org/10.1124/pr.114.009514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Bishop C, Daut GS, Walker PD (2005) Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958. Neuropharmacology 49(3):350–358. https://doi.org/10.1016/j.neuropharm.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  267. Bishop C, Tessmer JL, Ullrich T, Rice KC, Walker PD (2004) Serotonin 5-HT2A receptors underlie increased motor behaviors induced in dopamine-depleted rats by intrastriatal 5-HT2A/2C agonism. J Pharmacol Exp Ther 310(2):687–694. https://doi.org/10.1124/jpet.104.066365

    Article  CAS  PubMed  Google Scholar 

  268. Bishop C, Walker PD (2003) Combined intrastriatal dopamine D1 and serotonin 5-HT2 receptor stimulation reveals a mechanism for hyperlocomotion in 6-hydroxydopamine-lesioned rats. Neuroscience 121(3):649–657

    Article  CAS  PubMed  Google Scholar 

  269. Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M et al (2015) Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 132:96–168. https://doi.org/10.1016/j.pneurobio.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  270. Berthet A, Bezard E (2009) Dopamine receptors and L-dopa-induced dyskinesia. Parkinsonism Relat Disord 15(Suppl 4):S8–12

    Article  PubMed  Google Scholar 

  271. Berthet A, Porras G, Doudnikoff E, Stark H, Cador M, Bezard E et al (2009) Pharmacological analysis demonstrates dramatic alteration of D1 dopamine receptor neuronal distribution in the rat analog of L-DOPA-induced dyskinesia. J Neurosci 29(15):4829–4835

    Article  CAS  PubMed  Google Scholar 

  272. Visanji NP, Gomez-Ramirez J, Johnston TH, Pires D, Voon V, Brotchie JM et al (2006) Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson's disease. Mov Disord 21(11):1879–1891. https://doi.org/10.1002/mds.21073

    Article  PubMed  Google Scholar 

  273. Baron MS, Dalton WB (2003) Quetiapine as treatment for dopaminergic-induced dyskinesias in Parkinson’s disease. Mov Disord 18(10):1208–1209. https://doi.org/10.1002/mds.10551

    Article  PubMed  Google Scholar 

  274. Durif F, Debilly B, Galitzky M, Morand D, Viallet F, Borg M et al (2004) Clozapine improves dyskinesias in Parkinson disease: a double-blind, placebo-controlled study. Neurology 62(3):381–388

    Article  CAS  PubMed  Google Scholar 

  275. Reddy S, Factor SA, Molho ES, Feustel PJ (2002) The effect of quetiapine on psychosis and motor function in parkinsonian patients with and without dementia. Mov Disord 17(4):676–681. https://doi.org/10.1002/mds.10176

    Article  PubMed  Google Scholar 

  276. Wolters EC, Hurwitz TA, Mak E, Teal P, Peppard FR, Remick R et al (1990) Clozapine in the treatment of parkinsonian patients with dopaminomimetic psychosis. Neurology 40(5):832–834

    Article  CAS  PubMed  Google Scholar 

  277. Vanover KE, Weiner DM, Makhay M, Veinbergs I, Gardell LR, Lameh J et al (2006) Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N'-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2,1) (ACP-103), a novel 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 317(2):910–918. https://doi.org/10.1124/jpet.105.097006

    Article  CAS  PubMed  Google Scholar 

  278. Vanover KE, Betz AJ, Weber SM, Bibbiani F, Kielaite A, Weiner DM et al (2008) A 5-HT2A receptor inverse agonist, ACP-103, reduces tremor in a rat model and levodopa-induced dyskinesias in a monkey model. Pharmacol Biochem Behav 90(4):540–544. https://doi.org/10.1016/j.pbb.2008.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Cummings J, Isaacson S, Mills R, Williams H, Chi-Burris K, Corbett A et al (2014) Pimavanserin for patients with Parkinson's disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 383(9916):533–540. https://doi.org/10.1016/s0140-6736(13)62106-6

    Article  CAS  PubMed  Google Scholar 

  280. Taylor JL, Bishop C, Ullrich T, Rice KC, Walker PD (2006) Serotonin 2A receptor antagonist treatment reduces dopamine D1 receptor-mediated rotational behavior but not L-DOPA-induced abnormal involuntary movements in the unilateral dopamine-depleted rat. Neuropharmacology 50(6):761–768. https://doi.org/10.1016/j.neuropharm.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  281. Ebadi M, Srinivasan SK (1995) Pathogenesis, prevention, and treatment of neuroleptic-induced movement disorders. Pharmacol Rev 47(4):575–604

    CAS  PubMed  Google Scholar 

  282. Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci U S A 72(11):4376–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261(5562):717–719

    Article  CAS  PubMed  Google Scholar 

  284. Kapur S, Remington G (2001) Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia. Annu Rev Med 52:503–517. https://doi.org/10.1146/annurev.med.52.1.503

    Article  CAS  PubMed  Google Scholar 

  285. Roth BL, Ciaranello RD, Meltzer HY (1992) Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther 260(3):1361–1365

    CAS  PubMed  Google Scholar 

  286. Balsara JJ, Jadhav JH, Chandorkar AG (1979) Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology 62(1):67–69

    Article  CAS  PubMed  Google Scholar 

  287. Carter CJ, Pycock CJ (1977) Possible importance of 5-hydroxytryptamine in neuroleptic-induced catalepsy in rats [proceedings]. Br J Pharmacol 60(2):267P–268P

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Costall B, Fortune DH, Naylor RJ, Mardsen CD, Pycock C (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology 14(11):859–868

    Article  CAS  PubMed  Google Scholar 

  289. Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N (1990) 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double-blind comparison with orphenadrine and placebo. Clin Neuropharmacol 13(6):500–506

    Article  CAS  PubMed  Google Scholar 

  290. Miller CH, Fleischhacker WW, Ehrmann H, Kane JM (1990) Treatment of neuroleptic induced akathisia with the 5-HT2 antagonist ritanserin. Psychopharmacol Bull 26(3):373–376

    CAS  PubMed  Google Scholar 

  291. Lucas G, Bonhomme N, De Deurwaerdere P, Le Moal M, Spampinato U (1997a) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131(1):57–63

    Article  CAS  PubMed  Google Scholar 

  292. Ashby CR, Wang RY (1996) Pharmacological actions of the atypical antipsychotic drug clozapine: a review. Synapse 24(4):349–394. https://doi.org/10.1002/(SICI)1098-2396(199612)24:4<349::AID-SYN5>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  293. Herrick-Davis K, Grinde E, Teitler M (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther 295(1):226–232

    CAS  PubMed  Google Scholar 

  294. Navailles S, De Deurwaerdere P, Spampinato U (2006) Clozapine and haloperidol differentially alter the constitutive activity of central serotonin2C receptors in vivo. Biol Psychiatry 59(6):568–575

    Article  CAS  PubMed  Google Scholar 

  295. Rauser L, Savage JE, Meltzer HY, Roth BL (2001) Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J Pharmacol Exp Ther 299(1):83–89

    CAS  PubMed  Google Scholar 

  296. Schmidt CJ, Sorensen SM, Kehne JH, Carr AA, Palfreyman MG (1995) The role of 5-HT2A receptors in antipsychotic activity. Life Sci 56(25):2209–2222

    Article  CAS  PubMed  Google Scholar 

  297. Gardell LR, Vanover KE, Pounds L, Johnson RW, Barido R, Anderson GT et al (2007) ACP-103, a 5-hydroxytryptamine 2A receptor inverse agonist, improves the antipsychotic efficacy and side-effect profile of haloperidol and risperidone in experimental models. J Pharmacol Exp Ther 322(2):862–870. https://doi.org/10.1124/jpet.107.121715

    Article  CAS  PubMed  Google Scholar 

  298. Reavill C, Kettle A, Holland V, Riley G, Blackburn TP (1999) Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Br J Pharmacol 126(3):572–574. https://doi.org/10.1038/sj.bjp.0702350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Gunes A, Dahl ML, Spina E, Scordo MG (2008) Further evidence for the association between 5-HT2C receptor gene polymorphisms and extrapyramidal side effects in male schizophrenic patients. Eur J Clin Pharmacol 64(5):477–482. https://doi.org/10.1007/s00228-007-0450-x

    Article  CAS  PubMed  Google Scholar 

  300. Richtand NM, Welge JA, Logue AD, Keck PE, Strakowski SM, McNamara RK (2007) Dopamine and serotonin receptor binding and antipsychotic efficacy. Neuropsychopharmacology 32(8):1715–1726. https://doi.org/10.1038/sj.npp.1301305

    Article  CAS  PubMed  Google Scholar 

  301. Richtand NM, Welge JA, Logue AD, Keck PE, Strakowski SM, McNamara RK (2008) Role of serotonin and dopamine receptor binding in antipsychotic efficacy. Prog Brain Res 172:155–175. https://doi.org/10.1016/S0079-6123(08)00908-4

    Article  CAS  PubMed  Google Scholar 

  302. Zhang ZJ, Zhang XB, Sha WW, Reynolds GP (2002) Association of a polymorphism in the promoter region of the serotonin 5-HT2C receptor gene with tardive dyskinesia in patients with schizophrenia. Mol Psychiatry 7(7):670–671. https://doi.org/10.1038/sj.mp.4001052

    Article  CAS  PubMed  Google Scholar 

  303. Gobert A, Rivet JM, Lejeune F, Newman-Tancredi A, Adhumeau-Auclair A, Nicolas JP, Cistarelli L, Melon C, Millan MJ (2000) Serotonin(2C) receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe De Deurwaerdère .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miguelez, C., Morera-Herreras, T., De Deurwaerdère, P. (2018). 5-HT2A Receptors in the Basal Ganglia. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_12

Download citation

Publish with us

Policies and ethics