Skip to main content

Role of Serotonin2A (5-HT2A) Receptors in Epilepsy

  • Chapter
  • First Online:
5-HT2A Receptors in the Central Nervous System

Part of the book series: The Receptors ((REC,volume 32))

  • 1214 Accesses

Abstract

5-Hydroxytryptamine 2A receptors (5-HT2ARs), have been implicated in various psychiatric and neurological disorders, including epilepsy. Interestingly, epileptic patients commonly present comorbid psychiatric symptoms, and a bidirectional link between depression and epilepsy has been suggested. Therefore, the alteration of 5-HT2A signalling might represent a common anatomical and neurobiological substrate of both pathologies.

After a brief presentation of the role of 5-HT in epilepsy, this chapter illustrates how 5-HT2A receptors may directly or indirectly control neuronal excitability in networks involved in different types of epilepsy. It also synthetizes the preclinical and clinical evidence, demonstrating the role of these receptors in antiepileptic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine or serotonin

5-HT2A-Rs:

Serotonin 2A receptors

AD:

After discharge

DA:

Dopamine

DG:

Dentate gyrus

DOI:

2,5-Dimethoxy-4-iodoamphetamine

DRN:

Dorsal raphe nucleus

eGABA:

Extrasynaptic GABAA

GAERS:

Genetic absence epilepsy in rats from Strasbourg

GPCRs:

G protein coupled receptors

LC:

Locus coeruleus

MDA:

Maximal dentate activation

mPFC:

Medial prefrontal cortex

MRN:

Medial raphe nucleus

NE:

Norepinephrine

NRT:

Nucleus reticulari thalami

PAG:

Periaqueductal grey

SERT:

Serotonin transporter

SSRI:

Selective serotonin reuptake inhibitor

SUDEP:

Sudden unexpected death in epilepsy

SWDs:

Spike and wave discharges

VB:

Ventrobasal thalamus

VTA:

Ventral tegmental area

References

  1. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    Article  CAS  PubMed  Google Scholar 

  2. D’Adamo MC, Servettini I, Guglielmi L, Di Matteo V, Di Maio R, Di Giovanni G et al (2013) 5-HT2 receptors-mediated modulation of voltage-gated K+ channels and neurophysiopathological correlates. Exp Brain Res 230:453–462

    Google Scholar 

  3. Bagdy G, Kecskemeti V, Riba P, Jakus R (2007) Serotonin and epilepsy. J Neurochem 100:857–873

    Article  CAS  PubMed  Google Scholar 

  4. Ghanbari R, El Mansari M, Blier P (2012) Electrophysiological impact of trazodone on the dopamine and norepinephrine systems in the rat brain. Eur Neuropsychopharmacol 22:518–526

    Article  CAS  PubMed  Google Scholar 

  5. Jakus R, Bagdy G (2011a) The role of 5-HT2C receptor in epilepsy. In: Di Giovanni G et al (eds) 5-HT2C receptors in the pathophysiology of CNS disease, vol 22. Humana Press, Totowa, pp 429–444

    Chapter  Google Scholar 

  6. Di Giovanni G, Di Matteo V, Pierucci M, Benigno A, Esposito E (2006) Central serotonin2C receptor: from physiology to pathology. Curr Top Med Chem 6:1909–1925

    Article  PubMed  Google Scholar 

  7. Millan MJ, Marin P, Bockaert J, Mannoury la Cour C (2008) Signaling at G-protein-coupled serotonin receptors: recent advances and future research directions. Trends Pharmacol Sci 29:454–464

    Article  CAS  PubMed  Google Scholar 

  8. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia 51:676–685

    Article  PubMed  Google Scholar 

  9. Manning JP, Richards DA, Bowery NG (2003) Pharmacology of absence epilepsy. Trends Pharmacol Sci 24:542–549

    Article  CAS  PubMed  Google Scholar 

  10. Cope DW, Di Giovanni G, Fyson SJ, Orban G, Errington AC, Lorincz ML et al (2009) Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat Med 15:1392–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Errington AC, Di Giovanni G, Crunelli V (eds) (2014) Extrasynapitic GABAA receptors. Springer, New York

    Google Scholar 

  12. Errington AC, Gibson KM, Crunelli V, Cope DW (2011) Aberrant GABA(A) receptor-mediated inhibition in cortico-thalamic networks of succinic semialdehyde dehydrogenase deficient mice. PLoS One 6:e19021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bernhardt BC, Hong S, Bernasconi A, Bernasconi N (2013) Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci 7:624

    Article  PubMed  PubMed Central  Google Scholar 

  14. Crunelli V, Leresche N (2002) Childhood absence epilepsy: genes, channels, neurons and networks. Nat Rev Neurosci 3:371–382

    Article  CAS  PubMed  Google Scholar 

  15. Bonnycastle DD, Giarman NJ, Paasonen MK (1957) Anticonvulsant compounds and 5-hydroxytryptamine in rat brain. Br J Pharmacol Chemother 12:228–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bombardi C (2012) Neuronal localization of 5-HT2A receptor immunoreactivity in the rat hippocampal region. Brain Res Bull 87:259–273

    Article  CAS  PubMed  Google Scholar 

  17. Bombardi C, Di Giovanni G (2013) Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 230:427–439

    Article  CAS  PubMed  Google Scholar 

  18. Li QH, Nakadate K, Tanaka-Nakadate S, Nakatsuka D, Cui YL, Watanabe Y (2004) Unique expression patterns of 5-HT2A and 5-HT2C receptors in the rat brain during postnatal development: western blot and immunohistochemical analyses. J Comp Neurol 469:128–140

    Article  CAS  PubMed  Google Scholar 

  19. Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409:187–209

    Article  CAS  PubMed  Google Scholar 

  20. Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864:176–185

    Article  CAS  PubMed  Google Scholar 

  21. Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111:163–176

    Article  CAS  PubMed  Google Scholar 

  22. Di Giovanni G (2013) Serotonin in the pathophysiology and treatment of CNS disorders. Exp Brain Res 230:371–373

    Article  PubMed  Google Scholar 

  23. Prendiville S, Gale K (1993) Anticonvulsant effect of fluoxetine on focally evoked limbic motor seizures in rats. Epilepsia 34:381–384

    Article  CAS  PubMed  Google Scholar 

  24. Yan QS, Jobe PC, Dailey JW (1994) Evidence that a serotonergic mechanism is involved in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. Eur J Pharmacol 252:105–112

    Article  CAS  PubMed  Google Scholar 

  25. Statnick MA, Maring-Smith ML, Clough RW, Wang C, Dailey JW, Jobe PC et al (1996) Effect of 5,7-dihydroxytryptamine on audiogenic seizures in genetically epilepsy-prone rats. Life Sci 59:1763–1771

    Article  CAS  PubMed  Google Scholar 

  26. Tripathi PP, Di Giovannantonio LG, Viegi A, Wurst W, Simeone A, Bozzi Y (2008) Serotonin hyperinnervation abolishes seizure susceptibility in Otx2 conditional mutant mice. J Neurosci 28:9271–9276

    Article  CAS  PubMed  Google Scholar 

  27. Parsons LH, Kerr TM, Tecott LH (2001) 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J Neurochem 77:607–617

    Article  CAS  PubMed  Google Scholar 

  28. Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci U S A 97:14731–14736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Applegate CD, Tecott LH (1998) Global increases in seizure susceptibility in mice lacking 5-HT2C receptors: a behavioral analysis. Exp Neurol 154:522–530

    Article  CAS  PubMed  Google Scholar 

  30. Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J et al (2004) Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 24:412–419

    Article  CAS  PubMed  Google Scholar 

  31. Witkin JM, Baez M, Yu J, Barton ME, Shannon HE (2007) Constitutive deletion of the serotonin-7 (5-HT(7)) receptor decreases electrical and chemical seizure thresholds. Epilepsy Res 75:39–45

    Article  CAS  PubMed  Google Scholar 

  32. Van Oekelen D, Megens A, Meert T, Luyten WH, Leysen JE (2003) Functional study of rat 5-HT2A receptors using antisense oligonucleotides. J Neurochem 85:1087–1100

    Article  PubMed  CAS  Google Scholar 

  33. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF et al (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374:542–546

    Article  CAS  PubMed  Google Scholar 

  34. Gharedaghi MH, Seyedabadi M, Ghia JE, Dehpour AR, Rahimian R (2014) The role of different serotonin receptor subtypes in seizure susceptibility. Exp Brain Res 232:347–367

    Article  CAS  PubMed  Google Scholar 

  35. Buchanan GF, Murray NM, Hajek MA, Richerson GB (2014) Serotonin neurones have anti-convulsant effects and reduce seizure-induced mortality. J Physiol 592:4395–4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Przegalinski E, Baran L, Siwanowicz J (1994) Role of 5-hydroxytryptamine receptor subtypes in the 1-[3- (trifluoromethyl)phenyl] piperazine-induced increase in threshold for maximal electroconvulsions in mice. Epilepsia 35:889–894

    Article  CAS  PubMed  Google Scholar 

  37. Watanabe K, Ashby CR Jr, Katsumori H, Minabe Y (2000) The effect of the acute administration of various selective 5-HT receptor antagonists on focal hippocampal seizures in freely-moving rats. Eur J Pharmacol 398:239–246

    Article  CAS  PubMed  Google Scholar 

  38. Orban G, Bombardi C, Marino Gammazza A, Colangeli R, Pierucci M, Pomara C et al (2014) Role(s) of the 5-HT2C receptor in the development of maximal dentate activation in the hippocampus of anesthetized rats. CNS Neurosci Ther 20:651–661

    Article  CAS  PubMed  Google Scholar 

  39. Wada Y, Nakamura M, Hasegawa H, Yamaguchi N (1992) Role of serotonin receptor subtype in seizures kindled from the feline hippocampus. Neurosci Lett 141:21–24

    Article  CAS  PubMed  Google Scholar 

  40. Velisek L, Bohacenkova L, Capkova M, Mares P (1994) Clonidine, but not ritanserin, suppresses kainic acid-induced automatisms in developing rats. Physiol Behav 55:879–884

    Article  CAS  PubMed  Google Scholar 

  41. Ritz MC, George FR (1997) Cocaine-induced convulsions: pharmacological antagonism at serotonergic, muscarinic and sigma receptors. Psychopharmacology 129:299–310

    Article  CAS  PubMed  Google Scholar 

  42. Wada Y, Shiraishi J, Nakamura M, Koshino Y (1997) Role of serotonin receptor subtypes in the development of amygdaloid kindling in rats. Brain Res 747:338–342

    Article  CAS  PubMed  Google Scholar 

  43. Pericic D, Lazic J, Jazvinscak Jembrek M, Svob Strac D (2005) Stimulation of 5-HT 1A receptors increases the seizure threshold for picrotoxin in mice. Eur J Pharmacol 527:105–110

    Article  CAS  PubMed  Google Scholar 

  44. Grant KA, Hellevuo K, Tabakoff B (1994) The 5-HT3 antagonist MDL-72222 exacerbates ethanol withdrawal seizures in mice. Alcohol Clin Exp Res 18:410–414

    Article  CAS  PubMed  Google Scholar 

  45. Lazarova M, Petkova B, Petkov VD (1995) Effect of dotarizine on electroconvulsive shock or pentylenetetrazol-induced amnesia and on seizure reactivity in rats. Methods Find Exp Clin Pharmacol 17:53–58

    CAS  PubMed  Google Scholar 

  46. Shorvon S, Tomson T (2011) Sudden unexpected death in epilepsy. Lancet 378:2028–2038

    Article  PubMed  Google Scholar 

  47. Fletcher A, Higgins GA (2011) Serotonin and reward-related behaviour: focus on 5-HT2C receptors. In: Di Giovanni G et al (eds) 5-HT2C receptors in the pathophysiology of CNS disease. Springer, New York, pp 293–324

    Chapter  Google Scholar 

  48. Higgins GA, Silenieks LB, Lau W, de Lannoy IA, Lee DK, Izhakova J et al (2013) Evaluation of chemically diverse 5-HT(2)c receptor agonists on behaviours motivated by food and nicotine and on side effect profiles. Psychopharmacology 226:475–490

    Article  CAS  PubMed  Google Scholar 

  49. Orban G, Pierucci M, Benigno A, Pessia M, Galati S, Valentino M et al (2013) High dose of 8-OH-DPAT decreases maximal dentate gyrus activation and facilitates granular cell plasticity in vivo. Exp Brain Res 230:441–451

    Article  CAS  PubMed  Google Scholar 

  50. Stringer JL, Williamson JM, Lothman EW (1989) Induction of paroxysmal discharges in the dentate gyrus: frequency dependence and relationship to afterdischarge production. J Neurophysiol 62:126–135

    Article  CAS  PubMed  Google Scholar 

  51. Di Matteo V, Di Giovanni G, Esposito E (2000) SB 242084: a selective 5-HT2C receptor antagonist. CNS Drug Rev 6:195–205

    Article  Google Scholar 

  52. Kennett GA, Wood MD, Bright F, Trail B, Riley G, Holland V et al (1997) SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology 36:609–620

    Article  CAS  PubMed  Google Scholar 

  53. McLean TH, Parrish JC, Braden MR, Marona-Lewicka D, Gallardo-Godoy A, Nichols DE (2006) 1-Aminomethylbenzocycloalkanes: conformationally restricted hallucinogenic phenethylamine analogues as functionally selective 5-HT2A receptor agonists. J Med Chem 49:5794–5803

    Article  CAS  PubMed  Google Scholar 

  54. Watanabe K, Minabe Y, Ashby CR Jr, Katsumori H (1998) Effect of acute administration of various 5-HT receptor agonists on focal hippocampal seizures in freely moving rats. Eur J Pharmacol 350:181–188

    Article  CAS  PubMed  Google Scholar 

  55. Sorensen SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK et al (1993) Characterization of the 5-Ht(2) receptor antagonist Mdl 100907 as a putative atypical antipsychotic—behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266:684–691

    CAS  PubMed  Google Scholar 

  56. Montiel C, Herrero CJ, Garcia-Palomero E, Renart J, Garcia AG, Lomax RB (1997) Serotonergic effects of dotarizine in coronary artery and in oocytes expressing 5-HT2 receptors. Eur J Pharmacol 332:183–193

    Article  CAS  PubMed  Google Scholar 

  57. Coenen AM, Drinkenburg WH, Inoue M, van Luijtelaar EL (1992) Genetic models of absence epilepsy, with emphasis on the WAG/Rij strain of rats. Epilepsy Res 12:75–86

    Article  CAS  PubMed  Google Scholar 

  58. Graf M, Jakus R, Kantor S, Levay G, Bagdy G (2004) Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359:45–48

    Article  CAS  PubMed  Google Scholar 

  59. Jakus R, Graf M, Juhasz G, Gerber K, Levay G, Halasz P et al (2003) 5-HT2C receptors inhibit and 5-HT1A receptors activate the generation of spike-wave discharges in a genetic rat model of absence epilepsy. Exp Neurol 184:964–972

    Article  CAS  PubMed  Google Scholar 

  60. Jakus R, Bagdy G (2011b) The role of 5-HT2C receptor in epilepsy. In: Di Giovanni G et al (eds) 5-HT2C receptors in the pathophysiology of CNS disease. Springer-Verlag, Wien, pp 429–444

    Chapter  Google Scholar 

  61. Tokuda S, Kuramoto T, Tanaka K, Kaneko S, Takeuchi IK, Sasa M et al (2007) The ataxic groggy rat has a missense mutation in the P/Q-type voltage-gated Ca2+ channel alpha1A subunit gene and exhibits absence seizures. Brain Res 1133:168–177

    Article  CAS  PubMed  Google Scholar 

  62. Ohno Y, Sofue N, Imaoku T, Morishita E, Kumafuji K, Sasa M et al (2010) Serotonergic modulation of absence-like seizures in groggy rats: a novel rat model of absence epilepsy. J Pharmacol Sci 114:99–105

    Article  CAS  PubMed  Google Scholar 

  63. Cortez MA, McKerlie C, Snead OC 3rd (2001) A model of atypical absence seizures: EEG, pharmacology, and developmental characterization. Neurology 56:341–349

    Article  CAS  PubMed  Google Scholar 

  64. Velazquez JL, Huo JZ, Dominguez LG, Leshchenko Y, Snead OC 3rd (2007) Typical versus atypical absence seizures: network mechanisms of the spread of paroxysms. Epilepsia 48:1585–1593

    Article  PubMed  Google Scholar 

  65. Cortez MA, Perez Velazquez JL, Snead OC 3rd (2006) Animal models of epilepsy and progressive effects of seizures. Adv Neurol 97:293–304

    PubMed  Google Scholar 

  66. Bercovici E, Cortez MA, Snead OC 3rd (2007) 5-HT2 modulation of AY-9944 induced atypical absence seizures. Neurosci Lett 418:13–17

    Article  CAS  PubMed  Google Scholar 

  67. Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55:27–57

    Article  CAS  PubMed  Google Scholar 

  68. Depaulis A, David O, Charpier S (2015) The genetic absence epilepsy rat from Strasbourg as a model to decipher the neuronal and network mechanisms of generalized idiopathic epilepsies. J Neurosci Methods

    Google Scholar 

  69. Venzi M, David F, Bellet J, Bombardi C, Cavaccini A, Di Giovanni G (2016) Role of serotonin2A (5-HT2A) and 2C (5-HT2C) receptors in experimental absence seizures: an electrophysiological and immunohistochemical study in GAERS and NEC rats. Neuropharmacology 108:292–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bedard P, Pycock CJ (1977) “Wet-dog” shake behaviour in the rat: a possible quantitative model of central 5-hydroxytryptamine activity. Neuropharmacology 16:663–670

    Article  CAS  PubMed  Google Scholar 

  71. Corne SJ, Pickering RW (1967) A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia 11:65–78

    Article  CAS  PubMed  Google Scholar 

  72. Coulon P, Kanyshkova T, Broicher T, Munsch T, Wettschureck N, Seidenbecher T et al (2010) Activity modes in thalamocortical relay neurons are modulated by G(q)/G(11) family G-proteins—serotonergic and glutamatergic signaling. Front Cell Neurosci 4:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Munsch T, Freichel M, Flockerzi V, Pape HC (2003) Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc Natl Acad Sci U S A 100:16065–16070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Di Giovanni G, Cope DW, Crunelli V (2008a) Cholinergic and monoaminergic modulation of tonic GABAA inhibition in the rat dorsal lateral geniculate nucleus. In: Annual meeting of Neuroscience Society, San Diego, USA, p 531.532/D533

    Google Scholar 

  75. Cavaccini A, Yagüe JG, Errington AC, Crunelli V, Di Giovanni G (2012) Opposite effects of thalamic 5-HT2A and 5-HT2C receptor activation on tonic GABA-A inhibition: implications for absence epilepsy. In: Annual meeting of Neuroscience Society, New Orleans, USA, p 138.103/B157

    Google Scholar 

  76. Barbaresi P, Spreafico R, Frassoni C, Rustioni A (1986) GABAergic neurons are present in the dorsal column nuclei but not in the ventroposterior complex of rats. Brain Res 382:305–326

    Article  CAS  PubMed  Google Scholar 

  77. Yague JG, Cavaccini A, Errington AC, Crunelli V, Di Giovanni G (2013) Dopaminergic modulation of tonic but not phasic GABA(A)-receptor-mediated current in the ventrobasal thalamus of Wistar and GAERS rats. Exp Neurol 247:1–7

    Article  CAS  PubMed  Google Scholar 

  78. Crunelli V, Di Giovanni G (2014) Monoamine modulation of tonic GABAA inhibition. Rev Neurosci 25(2):1–12

    Article  CAS  Google Scholar 

  79. Connelly WM, Errington AC, Di Giovanni G, Crunelli V (2013) Metabotropic regulation of extrasynaptic GABA(A) receptors. Front Neural Circuits 7:171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Connelly WM, Errington AC, Yague JG, Cavaccini A, Crunelli V, Di Giovanni G (2014) GPCR modulation of extrasynapitic GABAA receptors. In: Errington AC et al (eds) Extrasynaptic GABAA receptors, vol 27. Springer, New York, pp 125–153

    Google Scholar 

  81. Steriade M (2005) Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci 28:317–324

    Article  CAS  PubMed  Google Scholar 

  82. Pinault D, Leresche N, Charpier S, Deniau JM, Marescaux C, Vergnes M et al (1998) Intracellular recordings in thalamic neurones during spontaneous spike and wave discharges in rats with absence epilepsy. J Physiol 509(Pt 2):449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McCormick DA, Wang Z (1991) Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. J Physiol 442:235–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Polack PO, Guillemain I, Hu E, Deransart C, Depaulis A, Charpier S (2007) Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizures. J Neurosci 27:6590–6599

    Article  CAS  PubMed  Google Scholar 

  85. Warter JM, Vergnes M, Depaulis A, Tranchant C, Rumbach L, Micheletti G et al (1988) Effects of drugs affecting dopaminergic neurotransmission in rats with spontaneous petit mal-like seizures. Neuropharmacology 27:269–274

    Article  CAS  PubMed  Google Scholar 

  86. Di Giovanni G, Di Matteo V, Esposito E (eds) (2008b) Serotonin–dopamine interaction: experimental evidence and therapeutic relevance. Elsevier, Amsterdam

    Google Scholar 

  87. Di Giovanni G, Esposito E, Di Matteo V (2010) Role of serotonin in central dopamine dysfunction. CNS Neurosci Ther 16:179–194

    Article  PubMed  CAS  Google Scholar 

  88. McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 39:337–388

    Article  CAS  PubMed  Google Scholar 

  89. Meuth SG, Aller MI, Munsch T, Schuhmacher T, Seidenbecher T, Meuth P et al (2006) The contribution of TWIK-related acid-sensitive K+−containing channels to the function of dorsal lateral geniculate thalamocortical relay neurons. Mol Pharmacol 69:1468–1476

    Article  CAS  PubMed  Google Scholar 

  90. Chapin EM, Andrade R (2001) A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current I(h). J Pharmacol Exp Ther 297:403–409

    CAS  PubMed  Google Scholar 

  91. Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715–718

    Article  CAS  PubMed  Google Scholar 

  92. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Popa D, Lena C, Fabre V, Prenat C, Gingrich J, Escourrou P et al (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25:11231–11238

    Article  CAS  PubMed  Google Scholar 

  94. Dekeyne A, Brocco M, Loiseau F, Gobert A, Rivet JM, Di Cara B et al (2012) S32212, a novel serotonin type 2C receptor inverse agonist/alpha2-adrenoceptor antagonist and potential antidepressant: II. A behavioral, neurochemical, and electrophysiological characterization. J Pharmacol Exp Ther 340:765–780

    Article  CAS  PubMed  Google Scholar 

  95. Bowden CL, Calabrese JR, Sachs G, Yatham LN, Asghar SA, Hompland M, Montgomery P, Earl N, Smoot TM, Deveaugh-Geiss J, Lamictal 606 Study, G (2003) A placebo-controlled 18-month trial of lamotrigine and lithium maintenance treatment in recently manic or hypomanic patients with bipolar I disorder. Arch Gen Psychiatry 60:392–400

    Article  CAS  PubMed  Google Scholar 

  96. Huang HY, Lee HW, Chen SD, Shaw FZ (2012) Lamotrigine ameliorates seizures and psychiatric comorbidity in a rat model of spontaneous absence epilepsy. Epilepsia 53:2005–2014

    Article  CAS  PubMed  Google Scholar 

  97. Glauser TA, Cnaan A, Shinnar S, Hirtz DG, Dlugos D, Masur D et al (2013) Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy: initial monotherapy outcomes at 12 months. Epilepsia 54:141–155

    Article  CAS  PubMed  Google Scholar 

  98. Iyer A, Marson A (2014) Pharmacotherapy of focal epilepsy. Expert Opin Pharmacother 15:1543–1551

    Article  CAS  PubMed  Google Scholar 

  99. Than M, Kocsis P, Tihanyi K, Fodor L, Farkas B, Kovacs G, Kis-Varga A, Szombathelyi Z, Tarnawa I (2007) Concerted action of antiepileptic and antidepressant agents to depress spinal neurotransmission: Possible use in the therapy of spasticity and chronic pain. Neurochem Int 50:642–652

    Article  CAS  PubMed  Google Scholar 

  100. Loscher W (2002) Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 16:669–694

    Article  PubMed  Google Scholar 

  101. Green AR, Johnson P, Mountford JA, Nimgaonkar VL (1985) Some anticonvulsant drugs alter monoamine-mediated behaviour in mice in ways similar to electroconvulsive shock; implications for antidepressant therapy. Br J Pharmacol 84:337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sullivan NR, Burke T, Siafaka-Kapadai A, Javors M, Hensler JG (2004) Effect of valproic acid on serotonin-2A receptor signaling in C6 glioma cells. J Neurochem 90:1269–1275

    Article  CAS  PubMed  Google Scholar 

  103. Yatham LN, Liddle PF, Lam RW, Adam MJ, Solomons K, Chinnapalli M et al (2005) A positron emission tomography study of the effects of treatment with valproate on brain 5-HT2A receptors in acute mania. Bipolar Disord 7(Suppl 5):53–57

    Article  CAS  PubMed  Google Scholar 

  104. Brown KM, Tracy DK (2013) Lithium: the pharmacodynamic actions of the amazing ion. Ther Adv Psychopharmacol 3:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kanner AM (2003) Depression in epilepsy: prevalence, clinical semiology, pathogenic mechanisms, and treatment. Biol Psychiatry 54:388–398

    Article  PubMed  Google Scholar 

  106. Kanner AM, Balabanov A (2002) Depression and epilepsy: how closely related are they? Neurology 58:S27–S39

    Article  PubMed  Google Scholar 

  107. Stafford-Clark D (1954) Epilepsy and depression: implications of empirical therapy. Guys Hosp Rep 103:306–316

    CAS  PubMed  Google Scholar 

  108. Kanner AM, Schachter SC, Barry JJ, Hersdorffer DC, Mula M, Trimble M et al (2012) Depression and epilepsy: epidemiologic and neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy Behav 24:156–168

    Article  PubMed  Google Scholar 

  109. Vega C, Guo J, Killory B, Danielson N, Vestal M, Berman R et al (2011) Symptoms of anxiety and depression in childhood absence epilepsy. Epilepsia 52:e70–e74

    Article  PubMed  PubMed Central  Google Scholar 

  110. Harden CL (2002) The co-morbidity of depression and epilepsy: epidemiology, etiology, and treatment. Neurology 59:S48–S55

    Article  CAS  PubMed  Google Scholar 

  111. Epps SA, Tabb KD, Lin SJ, Kahn AB, Javors MA, Boss-Williams KA et al (2012) Seizure susceptibility and epileptogenesis in a rat model of epilepsy and depression co-morbidity. Neuropsychopharmacology 37:2756–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sarkisova K, van Luijtelaar G (2012) The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected]. Prog Neuro-Psychopharmacol Biol Psychiatry 35:854–876

    Article  CAS  Google Scholar 

  113. Hesdorffer DC, Allen Hauser W, Olafsson E, Ludvigsson P, Kjartansson O (2006) Depression and suicide attempt as risk factors for incident unprovoked seizures. Ann Neurol 59:35–41

    Article  PubMed  Google Scholar 

  114. Epps SA, Weinshenker D (2013) Rhythm and blues: animal models of epilepsy and depression comorbidity. Biochem Pharmacol 85:135–146

    Article  CAS  PubMed  Google Scholar 

  115. Esposito E, Di Matteo V, Di Giovanni G (2008) Serotonin-dopamine interaction: an overview. Prog Brain Res 172:3–6

    Article  CAS  PubMed  Google Scholar 

  116. Russo E, Citraro R, Davoli A, Gallelli L, Donato Di Paola E, De Sarro G (2013) Ameliorating effects of aripiprazole on cognitive functions and depressive-like behavior in a genetic rat model of absence epilepsy and mild-depression comorbidity. Neuropharmacology 64:371–379

    Article  CAS  PubMed  Google Scholar 

  117. Hedges D, Jeppson K, Whitehead P (2003) Antipsychotic medication and seizures: a review. Drugs Today (Barc) 39:551–557

    Article  CAS  Google Scholar 

  118. Specchio LM, Iudice A, Specchio N, La Neve A, Spinelli A, Galli R et al (2004) Citalopram as treatment of depression in patients with epilepsy. Clin Neuropharmacol 27:133–136

    Article  CAS  PubMed  Google Scholar 

  119. Hidaka N, Suemaru K, Araki H (2010) Serotonin-dopamine antagonism ameliorates impairments of spontaneous alternation and locomotor hyperactivity induced by repeated electroconvulsive seizures in rats. Epilepsy Res 90:221–227

    Article  CAS  PubMed  Google Scholar 

  120. Genkova-Papazova M, Lazarova-Bakarova M, Petkov VD (1994) The 5-HT2 receptor antagonist ketanserine prevents electroconvulsive shock- and clonidine-induced amnesia. Pharmacol Biochem Behav 49:849–852

    Article  CAS  PubMed  Google Scholar 

  121. Graybiel AM (2004) Network-level neuroplasticity in cortico-basal ganglia pathways. Parkinsonism Relat Disord 10:293–296

    Article  PubMed  Google Scholar 

  122. Krebs-Thomson K, Paulus MP, Geyer MA (1998) Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology 18:339–351

    Article  CAS  PubMed  Google Scholar 

  123. Deransart C, Riban V, Le B, Marescaux C, Depaulis A (2000) Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 100:335–344

    Article  CAS  PubMed  Google Scholar 

  124. Marescaux C, Vergnes M, Depaulis A (1992) Genetic absence epilepsy in rats from Strasbourg - A review. J Neural Transm 35:37–69

    Google Scholar 

Download references

Acknowledgments

Our work in this area was supported by the ERUK (grant P1202 to VC and GDG), the Malta Council of Science and Technology (grant R&I-2013-14 to GDG and VC) and EU COST Action CM1103 (GDG and PDD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vincenzo Crunelli or Giuseppe Di Giovanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crunelli, V., Venzi, M., De Deurwaerdère, P., Di Giovanni, G. (2018). Role of Serotonin2A (5-HT2A) Receptors in Epilepsy. In: Guiard, B., Di Giovanni, G. (eds) 5-HT2A Receptors in the Central Nervous System. The Receptors, vol 32. Humana Press, Cham. https://doi.org/10.1007/978-3-319-70474-6_16

Download citation

Publish with us

Policies and ethics