Skip to main content
  • 1916 Accesses

Abstract

(Q)Structure-Activity Relationships (QSAR and SAR) studies have been widely used in Medicinal Chemistry as a support in the drug’s discovery and development process, as well as in the study of harmful and poisonous substances in Toxicological Chemistry. They have also been applied in other areas of the natural sciences as a tool for learning the behavior of biological systems, supporting the idea that the physiological effect of a compound is a function of its chemical structure So, SAR studies aim to extract relevant chemical information in series of chemical compounds that share a similar biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Nishikawa K, Fukuda H, Nakanishi K, Tazawa Y, Taniguchi T, Park SY, Hiradate S, Fujii Y, Okuda K, Shindo M (2012) Key structural features of cis-cinnamic acid as an allelochemical. Phytochemistry 84:56–67

    Article  CAS  PubMed  Google Scholar 

  • Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797

    Article  CAS  PubMed  Google Scholar 

  • Armitage JE, Lynch MF (1967) Automatic detection of structural similarities among chemical compounds. J Chem Soc C Org:521–528

    Google Scholar 

  • Avram S, Funar-Timofei S, Borota A, Chennamaneni SR, Manchala AK, Muresan S (2014) Quantitative estimation of pesticide-likeness for agrochemical discovery. J Chem Inform 6:1–11

    Google Scholar 

  • Bajorath J (2017) Representation and identification of activity cliffs. Expert Opin Drug Discovery 12:879–883

    Article  Google Scholar 

  • Bajusz D, Rácz A, Héberger K (2015) Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Chem Inform 7:1–13

    CAS  Google Scholar 

  • Barakat N, Bradley AP (2010) Rule extraction from support vector machines: a review. Neurocomputing 74:178–190

    Article  Google Scholar 

  • Barigye SJ, Duarte MH, Nunes CA, Freitas MP (2016) MIA-plot: a graphical tool for viewing descriptor contributions in MIA-QSAR. RSC Adv 6:49604–49612

    Article  CAS  Google Scholar 

  • Bender A, Jenkins JL, Scheiber J, Sukuru SCK, Glick M, Davies JW (2009) How similar are similarity searching methods ? A principal component analysis of molecular descriptor space. J Chem Inf Model 49:108–119

    Article  CAS  PubMed  Google Scholar 

  • Cartwright H (2015) Artificial neural networks. Springer, New York

    Book  Google Scholar 

  • Cereto-Massagué A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G (2015) Molecular fingerprint similarity search in virtual screening. Methods 71:58–63

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Basu S (2014) Mechanistic insight into the radical scavenging activity of polyphenols and its application in virtual screening of phytochemical library: an in silico approach. Eur Food Res Technol 239:885–893

    Article  CAS  Google Scholar 

  • Cimmino A, Masi M, Evidente M, Superchi S, Evidente A (2015) Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Nat Prod Rep 32:1629–1653

    Article  CAS  PubMed  Google Scholar 

  • Duesbury E, Holliday J, Willett P (2017) Comparison of maximum common subgraph isomorphism algorithms for the alignment of 2D chemical structures. Chem Med Chem. https://doi.org/10.1002/cmdc.201700482

  • Englert P, Kovács P (2015) Efficient heuristics for maximum common substructure search. J Chem Inf Model 55:941–955

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Adolfi A, Cimmino A (2011) Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality 23:674–693

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384–13421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fourches D, Muratov E, Tropsha A (2010) Trust but verify: on the importance of chemical structure curation in chemoinformatics and QSAR modeling research. J Chem Inf Model 50:1189–1204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freitas MR, Matias SVBG, Macedo RLG, Freitas MP, Venturin N (2013) Augmented multivariate image analysis applied to quantitative structure-activity relationship modeling of the phytotoxicities of benzoxazinone herbicides and related compounds on problematic weeds. J Agric Food Chem 61:8499–8503

    Article  CAS  PubMed  Google Scholar 

  • Gajewicz A (2018) How to judge whether QSAR/read-across predictions can be trusted? Novel approach for establishing model’s applicability domain. Environ Sci Nano 14. https://doi.org/10.1039/C7EN00774D

  • Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216

    Article  CAS  PubMed  Google Scholar 

  • Guha R, Van Drie JH (2008a) Structure – activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48:646–658

    Article  CAS  PubMed  Google Scholar 

  • Guha R, Van Drie JH (2008b) Assessing how well a modeling protocol captures a structure-activity landscape. J Chem Inf Model 48:1716–1728

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Stumpfe D, Bajorath J (2011) Lessons learned from molecular scaffold analysis. J Chem Inf Model 51:1742–1753

    Article  CAS  PubMed  Google Scholar 

  • Iyer P, Dimova D, Vogt M, Bajorath J (2012) Navigating high-dimensional activity landscapes: design and application of the ligand-target differentiation map. J Chem Inf Model 52:1962–1969

    Article  CAS  PubMed  Google Scholar 

  • Jhin C, Hwang KT (2015) Adaptive neuro-fuzzy inference system applied qsar with quantum chemical descriptors for predicting radical scavenging activities of carotenoids. PLoS One 10:1–13

    Article  CAS  Google Scholar 

  • Jiao L, Zhang X, Qin Y, Wang X, Li H (2016) Hologram QSAR study on the electrophoretic mobility of aromatic acids. Chemom Intell Lab Syst 157:202–207

    Article  CAS  Google Scholar 

  • Klopmand G (1992) In: Johnson MA, Maggiora GM (eds) Concepts and applications of molecular similarity. Wiley, New York 1990, J Comput Chem 13:539–540

    Google Scholar 

  • Liu P, Long W (2009) Current mathematical methods used in QSAR/QSPR studies. Int J Mol Sci 10:1978–1998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macías FA, Marín D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JMG (2006) Structure-activity relationship (SAR) studies of benzoxazinones, their degradation products, and analogues. Phytotoxicity on problematic weeds Avena fatua L. and Lolium rigidum Gaud. J Agric Food Chem 54:1040–1048

    Article  CAS  PubMed  Google Scholar 

  • McKinney JD (2000) The practice of structure activity relationships (SAR) in toxicology. Toxicol Sci 56:8–17

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Tyagi C, Pandey B, Chakraborty O, Kumar A, Jain AK (2016) Structural insights into the mode of action of plant flavonoids as anti-oxidants using regression analysis. Proc Natl Acad Sci 86:1023–1036

    CAS  Google Scholar 

  • Nagarajan M, Maruthanayagam V, Sundararaman M (2013) SAR analysis and bioactive potentials of freshwater and terrestrial cyanobacterial compounds: a review. J Appl Toxicol 33:313–349

    Article  CAS  PubMed  Google Scholar 

  • Pan L, Li X, Jin H, Yang X, Qin B (2017) Antifungal activity of umbelliferone derivatives: synthesis and structure-activity relationships. Microb Pathog 104:110–115

    Article  CAS  PubMed  Google Scholar 

  • Peltason L, Bajorath J (2008) Molecular similarity analysis in virtual screening. In: Varnek A, Tropsha A (eds) Chemoinformatics approaches to virtual screening. The Royal Society of Chemistry Publishing, Cambridge, UK, pp 120–149

    Chapter  Google Scholar 

  • Perez Gonzalez M, Teran C, Saiz-Urra L, Teijeira M (2008) Variable selection methods in QSAR: an overview. Curr Top Med Chem 8:1606–1627

    Article  Google Scholar 

  • Puzyn T, Leszczynski J, Cronin MTD (2010) Recent advances in QSAR Studies. Methods and applications. Springer, New York 423 pp

    Book  Google Scholar 

  • Rocher F, Roblin G, Chollet JF (2017) Modifications of the chemical structure of phenolics differentially affect physiological activities in pulvinar cells of Mimosa pudica L. II. Influence of various molecular properties in relation to membrane transport. Environ Sci Pollut Res 24:6910–6922

    Article  CAS  Google Scholar 

  • Rognan D (2011) Docking methods for virtual screening: principles and recent advances. In: Sotriffer C, Mannhold R, Kubinyi H, Folkers G (eds) Virtual screening: principles, challenges, and practical guidelines. Wiley-VCH, Weinheim, pp 153–176

    Chapter  Google Scholar 

  • Roy K, Ambure P, Kar S, Ojha PK (2018) Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J Chemom e2992. https://doi.org/10.1002/cem.2992

  • Ruiz IL, García GC, Angel M (2012) Structural-similarity-based approaches for the development of clustering and QSPR / QSAR Models in chemical databases. In: Dehmer M, Varmuza K, Bonchev D, Emmert-Streib F (eds) Statistical modelling of molecular descriptors in QSAR/QSPR. Wiley-VCH Verlag GmbH & Co. KGaA, UK

    Google Scholar 

  • Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R (2012) Comparison of different approaches to define the applicability domain of QSAR models. Molecules 17:4791–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satpathy R, Guru RK, Behera R (2010) Computational QSAR analysis of some physiochemical and topological descriptors of curcumin derivatives by using different statistical methods. J Chem Pharm Res 2:344–350

    CAS  Google Scholar 

  • Shaikh AR, Gonsalves SI, Nikam A, Kshirsagar SJ, Thombare Y (2015) Predicting pyrazinecarboxamides derivatives as an herbicidal agent: 3d Qsar by kNN-MFA and multiple linear regression approach. World Appl Sci J 33:980–989

    CAS  Google Scholar 

  • Shanmugam G, Jeon J (2017) Aided drug discovery in plant pathology. Plant Pathol J 33:529–542

    PubMed  PubMed Central  Google Scholar 

  • Sliwoski G, Kothiwale S, Meiler J, Lowe EWE (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Speck-Planche A, Kleandrova VV, Rojas-Vargas JA (2011) QSAR model toward the rational design of new agrochemical fungicides with a defined resistance risk using substructural descriptors. Mol Divers 15:901–909

    Article  CAS  PubMed  Google Scholar 

  • Stumpfe D, Bajorath J (2012) Methods for SAR visualization. RSC Adv 2:369–378

    Article  CAS  Google Scholar 

  • Stumpfe D, Hu Y, Dimova D, Bajorath J (2014) Recent progress in understanding activity cliffs and their utility in medicinal chemistry. J Med Chem 57:18–28

    Article  CAS  PubMed  Google Scholar 

  • Sukumar N, Das S, Krein M, Godawat R, Vitol I, Garde S, Bennett K, Breneman CM (2012) Molecular descriptors for biological systems. In: Guha R, Bender A (eds) Computational approaches in cheminformatics and bioinformatics. Wiley-VCH, Weinheim, pp 107–143

    Google Scholar 

  • Terfloth L (2003) Calculation of structure descriptors. In: Engel JG (ed) Chemo-informatics. Wyley-VCH, Weinheim, pp 401–437

    Google Scholar 

  • Tobias RD (1995) An introduction to partial least squares regression. SAS Conf Proc SAS Users Gr Int 20 (SUGI 20) 2–5

    Google Scholar 

  • Todeschini R, Consonni V, Mannhold R, Kubinyi H, Folkers G (2009) Molecular descriptors for chemoinformatics, vol I & II. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Todeschini R, Consonni V, Xiang H, Holliday J, Buscema M, Willett P (2012) Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J Chem Inf Model 52:2884–2901

    Article  CAS  PubMed  Google Scholar 

  • Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488

    Article  CAS  PubMed  Google Scholar 

  • Tropsha A, Gramatica P, Gombar V (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  • Vedani A, Dobler M (2002) 5D-QSAR: the key for simulating induced fit? J Med Chem 45:2139–2149

    Article  CAS  PubMed  Google Scholar 

  • Wassermann AM, Bajorath J (2011) A data mining method to facilitate SAR transfer. J Chem Inf Model 51:1857–1866

    Article  CAS  PubMed  Google Scholar 

  • Wassermann AM, Peltason L, Bajorath J (2010) Computational analysis of multi-target structure-activity relationships to derive preference orders for chemical modifications toward target selectivity. ChemMedChem 5:847–858

    Article  CAS  PubMed  Google Scholar 

  • Wawer MJ, Jaramillo DE, Dancik V, Fass DM, Stephen J, Shamji AF, Wagner BK, Schreiber SL, Paul A (2014) Automated structure–activity relationship mining: connecting chemical structure to biological profiles. J Biomol Screen 19:738–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willett P (2014) The calculation of molecular structural similarity: principles and practice. Mol Inform 33:403–413

    Article  CAS  PubMed  Google Scholar 

  • Xue CX, Zhang XY, Liu MC, Hu ZD, Fan BT (2005) Study of probabilistic neural networks to classify the active compounds in medicinal plants. J Pharm Biomed Anal 38:497–507

    Article  CAS  PubMed  Google Scholar 

  • Young D, Martin T, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Comb Sci 27:1337–1345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Teijeira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teijeira, M., Celeiro, M. (2018). SAR/QSAR. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_21

Download citation

Publish with us

Policies and ethics