Skip to main content

Beyond Ethanol: Contribution of Various Bioproducts to Enhance the Viability of Biorefineries

  • Chapter
  • First Online:
Book cover Sustainable Biotechnology- Enzymatic Resources of Renewable Energy

Abstract

Environmental pollution by the extensive use of fossil fuels and petroleum-based products is a current worldwide concern. In this context, the development of valuable products from renewable sources is an interesting and environmentally friendly alternative. Lignocellulosic biomass is a renewable low cost feedstock that presents in its composition high quantity of cellulose, carbohydrate extensively studied to produce cellulosic ethanol. However, considering the high cost of 2G ethanol process, the coupled production of other products can help the economic viability in a context of a biorefinery producing bioenergy, biopolymers, biopharmaceutical, nutrients, pigments, surfactants, biochemical, and others, from different fractions of biomass. Products with high economic value such as vitamins B7, B12, C and E, riboflavin, xylitol and lactic acid can be obtained by biotechnological route from sugars released after hydrolysis of cellulose and hemicellulose fraction present in biomass. Thus, an integrated industry that can direct production considering market fluctuation could be thought, taking advantage of biotechnological routes. In this chapter, biorefinery concept is briefly discussed and some bioproducts that can contribute with economic viability of current biorefineries are presented. Some interesting possibilities were discussed, including different compounds with a variety of applications as substitute of traditional products or representing new and innovative ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhafez AA, Husseiny SM, Abdel-Aziz AA, Sanad HM (2016) Optimization of β-carotene production from agro-industrial by-products by Serratia marcescens ATCC 27117 using Plackett-Burman design and central composite design. Ann Agric Sci 61:87–96

    Google Scholar 

  • Abdel-Rahman MA, Sonomoto K (2016) Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 236:176–192

    Article  CAS  PubMed  Google Scholar 

  • Adsul MG, Varma AJ, Gokhale DV (2007) Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem 9:58–62

    Article  CAS  Google Scholar 

  • Ahmed MA, Hwan Y, Terán-Hilares R et al (2016) Persulfate based pretreatment to enhance the enzymatic digestibility of rice straw. Bioresour Technol 222:523–526

    Article  CAS  PubMed  Google Scholar 

  • Akçakaya H, Tok S, Dal F et al (2017) β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells. Cell Biol Int 41:309–319

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque TL, Gomes SDL, Marques JJE et al (2015) Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today 255:33–40

    Article  CAS  Google Scholar 

  • Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47:110–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos JM, Stamford TL, Sarubbo LA et al (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Castro-Aguirre E, Iñiguez-Franco F, Samsudin H et al (2016) Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366

    Article  CAS  PubMed  Google Scholar 

  • Cesário MT, Raposo RS, de Almeida MC et al (2014) Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. N Biotechnol 31:104–113

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Jiang ZH, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Guo J, Li F et al (2014) Production of pullulan from xylose and hemicellulose hydrolysate by Aureobasidium pullulans AY82 with pH Control and dl-dithiothreitol Addition. Biotechnol Bioprocess Eng 288:282–288

    Article  CAS  Google Scholar 

  • Davis R, Kataria R, Cerrone F et al (2013) Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas strains. Bioresour Technol 150:202–209

    Article  CAS  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gentile P, Chiono V, Carmagnola I, Hatton P (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-García Y, Rosales MA, González-Reynoso O et al (2011) Polyhydroxybutyrate production by Saccharophagus degradans using raw starch as carbon source. Eng Life Sci 11:59–64

    Article  CAS  Google Scholar 

  • Goswami G, Chaudhuri S, Dutta D (2015) Studies on the stability of a carotenoid produced by a novel isolate using low cost agro-industrial residue and its application in different model systems. LWT—Food Sci Technol 63:780–790

    Article  CAS  Google Scholar 

  • Gran View Reasearch (2017) Lactic Acid Market Analysis By Application (Industrial, F&B, Pharmaceuticals, Personal Care) & Polylactic Acid (PLA) Market Analysis By Application (Packaging, Agriculture, Transport, Electronics, Textiles), And Segment Forecasts, 2014–2025. Available http://www.grandviewresearch.com/industry-analysis/lactic-acid-and-poly-lactic-acid-market. Accessed 08 Nov 2017

  • Grand View Research (2014) GLOBAL biosurfactants market by product (rhamnolipids, sophorolipids, mes, apg, sorbitan esters, sucrose esters) expected to reach usd 2,308.8 million by 2020. Available https://www.grandviewresearch.com/press-release/global-biosurfactants-market. Accessed 20 Oct 2017

  • Hernández-Pérez AF, Costa IAL, Silva DDV et al (2016) Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresour Technol 200:1085–1088

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Zhang Q, Lee DJ (2017) Kraft lignin biorefinery: a proposal. Technol, Bioresour. https://doi.org/10.1016/j.biortech.2017.08.169

    Book  Google Scholar 

  • Jazini MH, Fereydouni E, Karimi K (2017) Microbial xanthan gum production from alkali-pretreated rice straw. RSC Adv 7:3507–3514

    Article  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. App Microbiol Biotechnol 74:524–534

    Article  CAS  Google Scholar 

  • Koli SH, Suryawanshi RK, Patil CD, Patil SV (2017) Diversity and applications of versatile pigments produced by Monascus sp. Bio-pigmentation and biotechnological implementations. Wiley, Hoboken, NJ, USA, pp 193–214

    Chapter  Google Scholar 

  • Koutinas AA, Vlysidis A, Pleissner D et al (2014) Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chem Soc Ver 43:2587

    Article  CAS  Google Scholar 

  • Kuo YC, Yuan SF, Wang CA et al (2015) Production of optically pure d-lactic acid from lignocellulosic hydrolysate by using a newly isolated and d-lactate dehydrogenase gene-deficient Lactobacillus paracasei strain. Bioresour Technol 198:651–657

    Article  CAS  PubMed  Google Scholar 

  • Lasprilla AJR, Martinez GAR, Lunelli BH et al (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30:321–328

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Lee SJ, Kim SH et al (2008) Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil. Bioresour Technol 99:2288–2292

    Article  CAS  PubMed  Google Scholar 

  • Lee JC, Moon JH, Jeong JH et al (2016) Biodegradability of poly(lactic acid) (PLA)/lactic acid (LA) blends using anaerobic digester sludge. Macromol Res 24:741–747

    Article  CAS  Google Scholar 

  • Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  • Liu X, Ma X, Yao R, et al (2016) Sophorolipids production from rice straw via SO3 micro-thermal explosion by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576. AMB Express, 6, 60

    Google Scholar 

  • Ma K, Hu G, Pan L et al (2016) Highly efficient production of optically pure l -lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. Bioresour Technol 219:114–122

    Article  CAS  PubMed  Google Scholar 

  • Mack DR (2004) d(-)-lactic acid-producing probiotics, d(-)-lactic acidosis and infants. Can J Gastroenterology 18:671–675

    Article  Google Scholar 

  • Madsen JK, Pihl R, Moller AH et al (2015) The anionic biosurfactant rhamnolipid does not denature industrial enzymes. Frontiers Microbiol 6:292

    Article  Google Scholar 

  • Manandhar A, Shah A (2017) Life cycle assessment of feedstock supply systems for cellulosic biorefineries using corn stover transported in conventional bale and densified pellet formats. J Clean Prod 166:601–614

    Article  Google Scholar 

  • Markets Insider (2017) Ethanol price conmodity. Available http://markets.businessinsider.com/commodities/ethanol-price. Accessed 10 Nov 2017

  • Mihiretu GT, Brodin M, Chimphango AF et al (2017) Single-step microwave-assisted hot water extraction of hemicelluloses from selected lignocellulosic materials—a biorefinery approach. Bioresour Technol 241:669–680

    Article  CAS  PubMed  Google Scholar 

  • MME - MINISTÉRIO DE MINAS E ENERGIA - BRASIL/ Secretaria de Planejamento e Desenvolvimento Energético (2015) Plano decenal de expansão de energia 2024. http://www.epe.gov.br/PDEE/Relat%C3%B3rio%20Final%20do%20PDE%202024.pdf

  • Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463:127–136

    Article  CAS  PubMed  Google Scholar 

  • Moldes AB, Torrado AM, Barral MT, Domínguez JM (2007) Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. J Agric Food Chem 55:4481–4486

    Article  CAS  PubMed  Google Scholar 

  • Mpountoukas P, Pantazaki A, Kostareli E et al (2010) Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food Chem Toxicol 48:2934–2944

    Article  CAS  PubMed  Google Scholar 

  • Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT (2016) Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Ver 107:247–276

    Article  CAS  Google Scholar 

  • Nigam PS, Luke JS (2016) Food additives: production of microbial pigments and their antioxidant properties. Curr Opinion Food Sci 7:93–100

    Article  Google Scholar 

  • NOVACANA (2016) Granbio paralisa temporariamente sua usina de etanol celulósico. Available https://www.novacana.com/n/etanol/2-geracao-celulose/granbio-paralisa-usina-etanol-celulosico-050416/. Accessed 1 Aug 2017

  • NOVACANA (2017a) GranBio admite atraso em usina, mas espera etanol 2G competitivo em 2019. Available https://www.novacana.com/n/etanol/2-geracao-celulose/granbio-atraso-usina-etanol-2g-competitivo-2019-010617/. Accessed 21 Apr 2017

  • NOVACANA (2017b) BNDES limita investimentos nas usinas de etanol e alcança novo recorde negative. Available https://www.novacana.com/n/industria/investimento/bndes-limita-investimentos-usinas-etanol-recorde-negativo-030817/?kmi=teranhilares@gmail.com&utm_source=Etanol&utm_campaign=09a5f5a48e-Fonte_secou_BNDES_2017_08_03&utm_medium=email&utm_term=0_9fda3940f1-09a5f5a48e-71260893. Accessed 23 Apr 2017

  • Obruca S, Benesova P, Petrik S, Oborna J et al (2014) Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. Process Biochem 49:1409–1414

    Article  CAS  Google Scholar 

  • Oh YH, Lee SH, Jang YA et al (2015) Development of rice bran treatment process and its use for the synthesis of polyhydroxyalkanoates from rice bran hydrolysate solution. Bioresour Technol 181:283–290

    Article  CAS  PubMed  Google Scholar 

  • Oonkhanond B, Jonglertjunya W, Srimarut N et al (2017) Lactic acid production from sugarcane bagasse by an integrated system of lignocellulose fractionation, saccharification, fermentation, and ex-situ nanofiltration. J Environ Chem Eng 5:2533–2541

    Article  CAS  Google Scholar 

  • Pal S, Choudhary V, Kumar A et al (2013) Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol 147:449–455

    Article  CAS  PubMed  Google Scholar 

  • Parada MP, Osseweijer P, Duque JAP (2017) Sustainable biorefineries, an analysis of practices for incorporating sustainability in biorefinery design. Ind Crops Prod 106:105–123

    Article  CAS  Google Scholar 

  • Pejin J, Radosavljević M, Mojović L et al (2015) The influence of calcium-carbonate and yeast extract addition on lactic acid fermentation of brewer’s spent grain hydrolysate. Food Res Int 73:31–37

    Article  CAS  Google Scholar 

  • Petrik S, Kádár Z, Márová I (2013) Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass. Bioresour Technol 133:370–377

    Article  CAS  PubMed  Google Scholar 

  • Phan-Thi H, Durand P, Prost M et al (2016) Effect of heat-processing on the antioxidant and prooxidant activities of β-carotene from natural and synthetic origins on red blood cells. Food Chem 190:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Pleissner D, Neu AK, Mehlmann K et al (2016) Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresour Technol 218:167–173

    Article  CAS  PubMed  Google Scholar 

  • RAIZEN (2014) Tecnologia em energia renovável: etanol de segunda geração. Available http://www.raizen.com.br/energia-do-futuro-tecnologia-em-energia-renovavel/etanol-de-segunda-geracao. Accessed 12 Oct 2017

  • Raj V, Mumjitha MS (2015) Fabrication of biopolymers reinforced TNT/HA coatings on Ti: evaluation of its corrosion resistance and biocompatibility. Electrochim Acta 153:1–11

    Article  CAS  Google Scholar 

  • Ramya R, Sangeetha DR, Manikandan A, Rajesh KV (2017) Standardization of biopolymer production from seaweed associative bacteria. Int J Biol Macromol 102:550–564

    Article  CAS  Google Scholar 

  • Randhawa KKS, Rahman PKSM (2014) Rhamnolipid biosurfactants-past, present, and future scenario of global market. Front Microbiol 5:454

    Google Scholar 

  • Rao RS, Jyothi CP, Prakasham RS et al (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97:1974–1978

    Article  CAS  PubMed  Google Scholar 

  • Rao LV, Goli JK, Gentela J, Koti S (2016) Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresour Technol 213:299–310

    Google Scholar 

  • Ravella SR, Quiñones TS, Retter A et al (2010) Extracellular polysaccharide (EPS) production by a novel strain of yeast-like fungus Aureobasidium pullulans. Carbohydr Polym 82:728–732

    Article  CAS  Google Scholar 

  • Rodriguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opinion Food Sci 7:20–26

    Article  Google Scholar 

  • Roelants SLKW, Ciesielska K, Maeseneire SL et al (2016) Towards the industrialization of new biosurfactants: biotechnological opportunities for the lactone esterase gene from Starmerella bombicola. Biotechnol Bioeng 113:550–559

    Article  CAS  PubMed  Google Scholar 

  • Salgaonkar B, Bragança J (2017) Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioeng 4:50

    Google Scholar 

  • Samad A, Zhang J, Chen D et al (2017) Sweet sorghum bagasse and corn stover serving as substrates for producing sophorolipids. J Ind Microbiol Biotechnol 44:353–362

    Article  CAS  PubMed  Google Scholar 

  • Sawant SS, Tran TK, Salunke BK, Kim BS (2017) Potential of Saccharophagus degradans for production of polyhydroxyalkanoates using cellulose. Process Biochem 57:50–56

    Article  CAS  Google Scholar 

  • Secretariat of Energy and Mining of The Sao Paulo’s State Government (2017). Etanol 2G: produção da Raízen avança, mas deve ficar abaixo de 50% da capacidade, 2017. Available http://www.energia.sp.gov.br/2017/04/etanol-2g-producao-da-raizen-avanca-mas-deve-ficar-abaixo-de-50-da-capacidade/. Accessed 1 Aug 2017

  • Shah N, Nikam R, Gaikwad S et al (2016) Biosurfactant: types, detection methods, importance and applications. Indian J Microbiol Res 3:5–10

    Article  Google Scholar 

  • Silva LF, Taciro MK, Ramos ME et al (2004) Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31:245–254

    Article  CAS  PubMed  Google Scholar 

  • Silveira ST, Daroit DJ, Sant’Anna V et al (2013) Stability modeling of red pigments produced by Monascus purpureus in submerged cultivations with sugarcane bagasse. Food Bioprocess Technol 6:1007–1014

    Google Scholar 

  • Sindhu R, Gnansounou E, Binod P, Pandey A (2016) Bioconversion of sugarcane crop residue for value added products—an overview. Renew Energ 98:203–215

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Terán Hilares R, Ienny JV, Marcelino PF et al (2017a) Ethanol production in a simultaneous saccharification and fermentation process with interconnected reactors employing hydrodynamic cavitation-pretreated sugarcane bagasse as raw material. Bioresour Technol 243:652–659

    Article  CAS  PubMed  Google Scholar 

  • Terán Hilares R, Orsi CA, Ahmed MA et al (2017b) Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode. Bioresour Technol 230:76–81

    Article  CAS  PubMed  Google Scholar 

  • Terán-Hilares R, Reséndiz AL, Martínez RT et al (2016) Successive pretreatment and enzymatic saccharification of sugarcane bagasse in a packed bed flow-through column reactor aiming to support biorefineries. Bioresour Technol 203:42–49

    Article  CAS  PubMed  Google Scholar 

  • Transparency Market Research. Biosurfactants market—global scenario, raw material and consumption trends, industry analysis, size, share and forecasts 2011–2018. http://www.transparencymarketresearch.com/biosurfactants-market.html

  • Utrilla J, Vargas-Tah A, Trujillo-Martínez B et al (2016) Production of d -lactate from sugarcane bagasse and corn stover hydrolysates using metabolic engineered Escherichia coli strains. Bioresour Technol 220:208–214

    Article  CAS  PubMed  Google Scholar 

  • Vallejos ME, Chade M, Mereles EB et al (2016) Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crops Prod 91:161–169

    Article  CAS  Google Scholar 

  • Van Bogaert INA, Zhang J, Soetaert W (2011) Microbial synthesis of sophorolipids. Process Biochem 46:821–833

    Article  CAS  Google Scholar 

  • Vaz de Arruda P, Santos JC, Rodrigues CLB et al (2017) Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037. J Ind Eng Chem 47:297–302

    Article  CAS  Google Scholar 

  • Velmurugan P, Hur H, Balachandar V et al (2011) Monascus pigment production by solid-state fermentation with corn cob substrate. J Biosci Bioeng 112:590–594

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo F, Marie R, Bühler M, et al (2016) Monascus: a reality on the production and application of microbial pigments. Appl Biochem Biotechnol. 211–223

    Google Scholar 

  • Vijayendra SVN, Shamala TR (2014) Film forming microbial biopolymers for commercial application—a review. Crit Rev Biotechnol 34:338–357

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Ju X, Zhou D, Wei G (2014) Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. Bioresour Technol 164:12–19

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chang Q, Yu M, Niu R et al (2016) SSF Production of l-lactic Acid from Food Waste and Sophoraflavescens Residues. Procedia Environ. Sci. 31:122–126

    Article  CAS  Google Scholar 

  • Wei J, Yuan Q, Wang T, Wang L (2010) Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Frontiers Chem Eng China 4:57–64

    Article  CAS  Google Scholar 

  • Woiciechowski AL, Soccol CR, Rocha SN, Pandey A (2004) Xanthan gum production from cassava bagasse hydrolysate with Xanthomonas Campestris using alternative sources of nitrogen. App Biochem Biotechnol 118:305–312

    Article  CAS  Google Scholar 

  • Wu S, Jin Z, Kim JM et al (2009) Downstream processing of pullulan from fermentation broth. Carbohydr Polym 77:750–753

    Article  CAS  Google Scholar 

  • Wu S, Lu M, Chen J et al (2015) Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium Pullulans. Int J Biol Macromol 82:740–753

    Article  CAS  PubMed  Google Scholar 

  • Zeidan AA, Poulsen VK, Janzen T et al (2017) Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 41:168–200

    Article  Google Scholar 

  • Zhang Z (2015) Xanthan production with the hydrolysate of wheat straw. In Proceedings of the 2015 6th international conference on manufacturing science and engineering. Paris, France: Atlantis Press. https://doi.org/10.2991/icmse-15.2015.172

  • Zhang J, Zhang B, Wang D et al (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresour Technol 152:192–201

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Yin Z, Hu X (2014) Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation. Biotechnol App Biochem 61:716–723

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica CONCyTEC-Perú (CONCyTEC-Perú, process number 219-2014), Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq-Brazil (grant number 449609/2014-6 and 168930/2017-0) and FAPESP (process number 2016/23758-4) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio César dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terán Hilares, R., Ahmed, M.A., de Souza Junior, M.M., Marcelino, P.R.F., da Silva, S.S., dos Santos, J.C. (2018). Beyond Ethanol: Contribution of Various Bioproducts to Enhance the Viability of Biorefineries. In: Singh, O., Chandel, A. (eds) Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-95480-6_6

Download citation

Publish with us

Policies and ethics