Skip to main content

Adaptive Topology and Shape Optimization with Integrated Casting Simulation

  • Conference paper
  • First Online:
EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization (EngOpt 2018)

Included in the following conference series:

Abstract

The automotive future demands light and affordable designs and components. To develop lighter parts in a decreased time structural optimization is used in many R&D departments.

To ensure an ideal design of cast parts in the topology optimization a casting simulation is integrated in the optimization procedure. With this additional simulation the castability can be optimized in parallel to the mechanical properties and the weight. The result is a manufacturable and light structure, which can be transferred into a real part easily. To describe the geometry a regular voxel mesh in combination with a binary design variable per element was used in the past.

In this paper an approach is shown to use the available routines of the topology optimization to optimize the shape of the part on a small scale, too, and provide a smooth optimization result. This is done by using a design variable per element, which can be continuous between zero and one in the surface layer. In this way all implemented functions and manufacturing restrictions can be used for both topology and shape optimization. To avoid numerical difficulties the FEM simulations are done with a converted tetrahedron mesh. This increases the quality of the simulation by guaranteeing a smooth surface and avoiding sharp edges. The CFD based casting process simulation is still done with the very fast, structured hexahedron elements. The results of the simulations are mapped on the optimization model to change the part design again. Beside the increased degrees of freedom for doing shape optimization and the higher simulation quality with adapted meshes this optimization procedure allows easier the smoothing of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ANSA: BETA CAE Systems 2017. https://www.beta-cae.com/ansa.htm, abgerufen am: 10.04.2018

  2. Allaire, G., Jouve, F.U., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), S363–S393 (2004). https://doi.org/10.1016/j.jcp.2003.09.032

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrä, H.: Spezifische Strukturoptimierungsverfahren für Gießereien. Simulation in der Produkt- und Prozessentwicklung - Tagungsband. Symposium, 5–7 November 2003. Bremen, S. 165–170. 3-8167-6454-1

    Google Scholar 

  4. Bartz, R., Fiebig, S., Franke, T., Vietor, T.: Voxel-based smoothing of topology-optimized structures to fulfill design requirements. In: 13th International Conference on Computational Structures Technology, 4–6 September 2018, Barcelona (in preparation)

    Google Scholar 

  5. Bendsøe, M.P.U., Sigmund, O.: Topology Optimization. Theory, Methods, and Applications. Springer, Berlin (2004). 3662050862

    MATH  Google Scholar 

  6. Drude, N., Meier, L., Hoffmann, H.U., Scheurle, J.: Model based strategies for an optimised ribbing design of large forming tools. Product. Eng. 3(4–5), S435–S440 (2009). https://doi.org/10.1007/s11740-009-0181-1

    Article  Google Scholar 

  7. Eschenauer, H.A., Kobelev, V.V., Schumacher, A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8(1), S42–S51 (1994). https://doi.org/10.1007/bf01742933

    Article  Google Scholar 

  8. Fiebig, S.: LEOPARD – Die neue multidisziplinäre Optimierungsplattform bei Volkswagen. Präsentation. CAInsperation Forum 2017. 29.03.2017. München

    Google Scholar 

  9. Fiebig, S.: Form- und Topologieoptimierung mittels Evolutionärer Algorithmen und heuristischer Strategien. Dissertation, Berlin, Logos (2016). 3832543678

    Google Scholar 

  10. Gersborg, A.R., Andreasen, C.S.: An explicit parameterization for casting constraints in gradient driven topology optimization. Struct. Multidiscip. Optim. 44(6), S875–S881 (2011). https://doi.org/10.1007/s00158-011-0632-0

    Article  Google Scholar 

  11. Guest, J.K.: Topology optimization with multiple phase projection. Comput. Methods Appl. Mech. Eng. 199(1–4), 123–135 (2009). https://doi.org/10.1016/j.cma.2009.09.023

    Article  MathSciNet  MATH  Google Scholar 

  12. Harzheim, L.U., Graf, G.: A review of optimization of cast parts using topology optimization II. Topology optimization with manufacturing constraints. Struct. Multidiscip. Optim. 31(5), S388–S399 (2006). https://doi.org/10.1007/s00158-005-0554-9

    Article  Google Scholar 

  13. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), S201–S225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  14. Jang, G.-W., Kim, K.J., Kim, Y.Y.: Integrated topology and shape optimization software for compliant MEMS mechanism design. Adv. Eng. Softw. 39(1), S1–S14 (2008). https://doi.org/10.1016/j.advengsoft.2006.12.003

    Article  Google Scholar 

  15. Kumar, A.: Shape and topology synthesis of structures using a sequential optimization algorithm. Dissertation, Massachusetts Institute of Technology (1993)

    Google Scholar 

  16. Li, Q., Steven, G.P., Querin, O.M., Xie, Y.M.: Shape and topology design for heat conduction by Evolutionary Structural Optimization. Int. J. Heat Mass Transf. 42(17), S3361–S3371 (1999). https://doi.org/10.1016/s0017-9310(99)00008-3

    Article  Google Scholar 

  17. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graph. 21(4), S163–S169 (1987). https://doi.org/10.1145/37401.37422

    Article  Google Scholar 

  18. Mache, T.: Methode zur Konstruktion und Optimierung von Strukturgussbauteilen unter Berücksichtigung von fertigungstechnologischen Randbedingungen in der frühen Phase der Entwicklung. 14. FLOW-3D - Nutzertreffen. 07.–09.10.2014. Rottenburg

    Google Scholar 

  19. Maurer, S.A.: Multidisziplinäre Formoptimierung modularer Grundgeometrien für Druckgussbauteile mit strömungs- und strukturmechanischen Zielfunktionen. Dissertation. Technische Universität Bergakademie Freiberg (2016)

    Google Scholar 

  20. Michailidis, C.: Manufacturing Constraints and Multi-Phase Shape and Topology Optimization via a Level-Set Method. Dissertation, Ecole Polytechnique X 2014

    Google Scholar 

  21. Querin, O.M.: Evolutionary structural optimisation: stress based formulation and implementation. Dissertation, University of Sydney (1997)

    Google Scholar 

  22. Ramm, E., Maute, K.U., Schwarz, S.: Adaptive topology and shape optimization. Computational Mechanics, New Trends and Applications, Barcelona (1998)

    Google Scholar 

  23. Schumacher, A.: Optimierung Mechanischer Strukturen. Springer, Berlin (2005). 3540267735

    Google Scholar 

  24. Sethian, J.A.U., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), S489–S528 (2000). https://doi.org/10.1006/jcph.2000.6581

    Article  MathSciNet  MATH  Google Scholar 

  25. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33(4–5), 401–424 (2007). https://doi.org/10.1007/s00158-006-0087-x

    Article  Google Scholar 

  26. Xia, Q., Shi, T., Wang, M.Y.U., Liu, S.: A level set based method for the optimization of cast part. Struct. Multidiscip. Optim. 41(5), S735–S747 (2010). https://doi.org/10.1007/s00158-009-0444-7

    Article  Google Scholar 

  27. Franke, T., Fiebig, S., Paul, K., Vietor, T.U., Sellschopp, J.: Topology optimization with integrated casting simulation and parallel manufacturing process improvement. In: Advances in Structural and Multidisciplinary Optimization. Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12). 978-3-319-67987-7

    Google Scholar 

  28. Franke, T., Fiebig, S., Sellschopp, J.U., Vietor, T.: Topology optimization with integrated casting simulation suitable for a continuous development process. In: Automotive CAE Grand Challenge 2017, 5.–06.04.2017, Hanau, Germany

    Google Scholar 

  29. Franke, T., Fiebig, S., Vietor, T.U., Sellschopp, J.: Gussgerechter Leichtbau in der Topologieoptimierung mittels integrierter Gießsimulation inklusive Formfüllung und Erstarrung. 18. Kongress SIMVEC - Simulation und Erprobung in der Fahrzeugentwicklung 2016. VDI-Berichte, Bd. 2279. 22.–23.11.2016, pp. S251–S266, Baden-Baden, 978-3-18-092279-9

    Google Scholar 

  30. Franke, T., Vietor, T., Fiebig, S., Horstmann, G.M.: Robust and production-oriented topology optimization of cast parts including manufacturing restrictions and process simulation. In: Seminar: Optimization and Robust Design, pp. S9–S20, 23–24.3.2015. Wiesbaden, 978-1-874376-84-2

    Google Scholar 

  31. Franke, T., Vietor, T., Fiebig, S., Horstmann, G.M.: Robuste und produktionsgerechte Topologieoptimierung von Gussbauteilen mit Fertigungsrestriktionen und integrierter Prozesssimulation. NAFEMS Online-Magazin Zeitschrift für numerische Simulationsmethoden und angrenzende Gebiete 3(35). Ausgabe, pp. S44–S56 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Franke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franke, T., Fiebig, S., Bartz, R., Vietor, T., Hage, J., vom Hofe, A. (2019). Adaptive Topology and Shape Optimization with Integrated Casting Simulation. In: Rodrigues, H., et al. EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. EngOpt 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-97773-7_109

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97773-7_109

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97772-0

  • Online ISBN: 978-3-319-97773-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics