Skip to main content

Evolutionary Computation

This section presents a summary of the main concepts on which evolutionary algorithms are based. First, the operating principle of Genetic Algorithms (GAs) is explained and their main parts and their evolution parameters described. Next, a description of Cultural Algorithms (CAs) is presented and its main components are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, USA (1994)

    Google Scholar 

  2. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, USA (1992)

    MATH  Google Scholar 

  3. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Inc, Reading (1989)

    MATH  Google Scholar 

  4. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, Oxford (1996)

    Google Scholar 

  5. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. John Wiley and Sons, NY (1966)

    MATH  Google Scholar 

  6. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, USA (1991)

    Google Scholar 

  7. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, USA (1996)

    MATH  Google Scholar 

  8. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Boston (1992)

    Google Scholar 

  9. Durham, W.: Co-Evolution: Genes, Culture and Human Diversity. Stanford University Press, Stanford (1994)

    Google Scholar 

  10. Renfrew, A.C.: Dynamic modeling in archaeology: what, when, and where? In: van der Leeuw, S.E. (ed.) Dynamical Modeling and the Study of Change in Archaeology. Edinburgh University Press, Edinburgh

    Google Scholar 

  11. Reynolds, R.G.: An Introduction to Cultural Algorithms, World Congress on Computational Intelligence (2002)

    Google Scholar 

  12. Reynolds, R.G., Chung, C.-J.: A Testbed for Solving Optimization Problems Using Cultural Algorithms. In: Evolutionary Programming V: Proceedings of the Fifth Annual Conference on Evolutionary Programming, San Diego, CA, USA, February 29 - March 2, 1996, vol. 2, MIT Press, Cambridge (1996)

    Google Scholar 

  13. Reynolds, R.G., Chung, C.-J.: A Self-adaptive Approach to Representation Shifts in Cultural Algorithms. In: Proceedings of 1996 IEEE International Conference on Evolutionary Computation (ICEC 1996), Nagoya University, Japan, May 20-22, 1996. IEEE, Los Alamitos (1996)

    Google Scholar 

  14. Potter, M.A., De Jong, K.A.: Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents. Evolutionary Computation 8(1), 1–29 (2000)

    Article  Google Scholar 

  15. Potter, M.A., De Jong, K.A.: A Cooperative Co-Evolutionary Approach to Function Optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)

    Google Scholar 

  16. Morrison, J.: Co-Evolution and Genetic Algorithms, Master thesis, Carleton University (November 1998)

    Google Scholar 

  17. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  19. P. Genética, http://www.ica.ele.puc-rio.br/cursos/download/CE-ga9.pdf (Last access December 9, 2003) (in Portuguese)

  20. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Academic Press / Morgan Kaufmann, San Francisco (1998) (3rd corr. edn., 2001)

    Google Scholar 

  21. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  22. Han, K.-H., Kim, J.H.: Genetic Quantum Algorithm and its Application to Combinatorial Optimization Problem. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 1354–1360. IEEE, Los Alamitos (2000)

    Chapter  Google Scholar 

  23. Han, K.-H., Kim, J.H.: Quantum-Inspired Evolutionary Algorithm for a Class of Combinatorial Optimization. IEEE Transactions on Evolutionary Computation 6(6), 580–593 (2002)

    Article  Google Scholar 

  24. Abs da Cruz, A.V., Vellasco, M.M.B.R., Pacheco, M.A.C.: Quantum-Inspired Evolutionary Algorithm for Numerical Optimization. In: Nadia, N., Leandro dos Santos, C., Luiza de Macedo, M. (eds.) Book Series Studies in Computational Intelligence, Book Quantum Inspired Intelligent Systems, vol. 121, pp. 115–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Cantú-Paz, E.: Designing efficient master-slave parallel genetic algorithms, Technical report 95004, Illinois Genetic Algorithms Laboratory, University of Illinois and Urbana-Champaign, Urbana, IL (1997)

    Google Scholar 

  26. Cohoon, J.P., et al.: Punctuated equilibria: A parallel genetic algorithm. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference of Genetic Algorithms, p. 148. Lawrence Erlbaum Associates, Mahwah (1987)

    Google Scholar 

  27. Manderick, B., Spiessens, P.: Fine-Grained Parallel Genetic Algorithms. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, p. 428. Morgan Kauffman, San Francisco (1989)

    Google Scholar 

  28. Tomassini, M.: Parallel and Distributed Evolutionary Algorithms: A Review. In: Evolutionary Algorithms in Engineering and Computer Science. J. Wiley and Sons, K. Miettinen, M. Mäkelä (1999)

    Google Scholar 

  29. Mc Culloch, W.S., Pitts, W.: A logical Calculus of Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics (5), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  30. Hebb, D.O.: The Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  31. Rosenblatt, F.: Principles of Neurodynamics. Spartan, New York (1962)

    MATH  Google Scholar 

  32. Minsky, M.L., Papert, S.A.: Perceptrons: An Introduction to Computational Geometry, 3rd edn. MIT Press, Massachusetts (1988)

    MATH  Google Scholar 

  33. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City (1991)

    Google Scholar 

  34. Hopfield, J.J.: Neural Network and Physical Systems with Emergent Collective Computation Abilities; In: National Academy of Science, USA, 1979/Annals/ USA, pp. 2554–2558 (1982)

    Google Scholar 

  35. Puskorius, G.V., Feldkamp, L.A.: Decoupled Extended Kalman Filter Training of Feedforward Layered Networks. In: International Joint Conference on Neural Networks, vol. 1, pp. 771–777 (1991)

    Google Scholar 

  36. Rumelhart, D.E., Hilton, G.E., Williams, R.J.: Learning Representations by Back-Propagation Errors. Nature (323), 533–536 (1986)

    Article  Google Scholar 

  37. Werbos, J.P.: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science, Havard University, PhD Thesis (1974)

    Google Scholar 

  38. Hinton, G.E., Sejnowski, T.J.: Learning and Relearning in Boltzmann Machines. In: Parallel Distributed Processing/ Annals, ch. 7, vol. 1 (1986)

    Google Scholar 

  39. Wasserman, P.D.: Neural Computing: Theory and Practice. Van Nostrand Reinhold, New York (1989)

    Google Scholar 

  40. Hopfield, J.J.: Neurons with Grade Responses have Collective Computational Properties Like Those of Two-State Neurons. In: National Academy of Science, USA, 1981/Annals/USA, pp. 3088–3092 (1984)

    Google Scholar 

  41. Haykin, S.: Neural Networks: A Comprehensive Fundamentation, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  42. Elman, J.L.: Finding Structure in Time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  43. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory 39, 930–945 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  44. Swingler, K.: Applying Neural Networks - A Practical Guide. Academic Press, London (1996)

    Google Scholar 

  45. Broomhead, D.S., Lowe, D.: Multivariate functional interpolation and adaptive networks. Complex Systems 2, 321–355 (1988)

    MATH  MathSciNet  Google Scholar 

  46. Park, J., Sandberg, I.W.: Universal approximation using radialbasis-function networks. Neural Computation 3, 246–257 (1991)

    Article  Google Scholar 

  47. Bellman, R.: Dynamic Programming. Princeton University Press, New Jersey (1957)

    Google Scholar 

  48. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  49. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  50. Zimmermann, H.-J.: Fuzzy Set Theory and its Applications, 2nd edn. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  51. Bojadziev, G., Bojadziev, M.: Fuzzy Logic for Business, Finance and Management. World Scientific Publishing Co. Ltd., Singapore (1997)

    MATH  Google Scholar 

  52. Zadeh, L.A.: Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems 1, 3–28 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  53. Dubois, D., Prade, H.: Unfair Coins and Necessity Measures: Towards a Possibilistic Interpretation of Histograms. Fuzzy Sets and Systems 10, 15–20 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  54. Dubois, D., Prade, H.: On Several Representations of Uncertain Body of Evidence. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Process, pp. 167–182. North-Holland, Amsterdam (1982)

    Google Scholar 

  55. Dubois, D.: Sur les Liens entre les Notions de Probabilité et de Possibilité (Quelques Remarques), CNRS Round Table Quelques Applications Concrètes Utilisant les Derniers Perfections de la Théorie du Flou, Lyon, pp. 23–25 (1980)

    Google Scholar 

  56. Delgado, M., Moral, S.: On the Concept of Possibility-Probability Consistency. Fuzzy Sets and Systems 21, 311–318 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  57. Xuecheng, L.: On the Concept of Possibility-Probability Consistency Measure - General Cases, Intelligent Processing Systems. In: 1997 IEEE International Conference on ICIPS 1997, October 28-31, 1997, vol. 2, pp. 1889–1893 (1997)

    Google Scholar 

  58. Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)

    MATH  Google Scholar 

  59. Yamada, K.: Probability-Possibility Transformation Based on Evidence Theory. In: IFSA World Congress and 20th NAFIPS International Conference. Joint 9th, July 25-28, 2001, vol. 1, pp. 70–75 (2001)

    Google Scholar 

  60. Kosko, B.: Fuzzy Engineering, 1st edn. Prentice Hall, Englewood Cliffs (1996)

    Google Scholar 

  61. Fang, J.H., Chen, H.C.: Uncertainties are Better Handled by Fuzzy Arithmetic. The American Association of Petroleum Geologists Bulletin VI 74(8), 1228–1233 (1990)

    Google Scholar 

  62. Giachetti, R., Young, R.E.: A Parametric Representation of Fuzzy Numbers and Their Arithmetic Operators. Fuzzy Sets and Systems 91, 185–202 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  63. Moore, R.E.: Interval Analysis, Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  64. Moore, R.E.: Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1979)

    MATH  Google Scholar 

  65. Dimitrova, N.S., Markov, S.M., Popovo, E.D.: Extended Interval Arithmetics: New Results and Applications. In: Atanasova, L., Herzberger, J. (eds.) Computer Arithmetic and Enclosure Methods, pp. 225–232. Elsevier Sci. Publishers B. V., Amsterdam (1992)

    Google Scholar 

  66. Anile, A.M., Deodato, S., Privitera, G.: Implementing Fuzzy Arithmetic. Fuzzy Sets and Systems 72, 239–250 (1995)

    Article  Google Scholar 

  67. Pereira, S.C.A.: Tratamento de Incertezas em Modelagem de Bacias, Doctoral Thesis in Civil Engineering Sciences. Federal University of Rio de Janeiro, COPPE/UFRJ (2002) (in portuguese)

    Google Scholar 

  68. Vuorimaa, P.: Fuzzy Self-organizing Map. Fuzzy Sets and Systems (66), 223–231 (1994)

    Article  Google Scholar 

  69. Jang, J.S.R., Sun, C.-T.: Neuro-Fuzzy Modeling and Control. In: Proceedings of the IEEE (1995)

    Google Scholar 

  70. de Souza, F.J.: Modelos Neuro-Fuzzy Hierárquicos, Doctoral Thesis, DEE, PUC-Rio (1999) (in portuguese)

    Google Scholar 

  71. Vellasco, M.M.B.R., Pacheco, M.A.C., Neto, L.S.R., de Souza, F.J.: Electric Load Forecasting: Evaluating the Novel Hierarchical Neuro-Fuzzy BSP Model. International Journal of Electrical Power & Energy Systems 26(2), 131–142 (2004)

    Article  Google Scholar 

  72. Gonçalves, L.B., Vellasco, M.M.B.R., Pacheco, M.A.C., de Souza, F.J.: Inverted Hierarchical Neuro-Fuzzy BSP System: A Novel Neuro-Fuzzy Model for Pattern Classification and Rule Extraction in Databases. IEEE Transactions on Systems, Man & Cybernetics, Part C: Applications and Review 36(2), 236–248 (2006)

    Article  Google Scholar 

  73. Vellasco, M.M.B.R., Pacheco, M.A., Figueiredo, K., de Souza, F.J.: Hierarchical Neuro-Fuzzy Systems - Part I. Encyclopedia of Artificial Intelligence (2008); Rabuñal, J.R., Dorado, J., Pazos, A. (eds.) Information Science Reference

    Google Scholar 

  74. Chin, N., Feiner, S.: Near Real-Time Shadow Generation Using BSP Trees, Computer Graphics. SIGGRAPH 1989 Proceedings 23(3), 99–106 (1989)

    Article  Google Scholar 

  75. Chrysanthou, Y., Slatér, M.: Computing Dynamic Changes to BSP Trees. In: Computer Graphics Forum. EUROGRAPHICS 1992 Proceedings, vol. 11(3), pp. 321–332 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

da Cruz, A.V.A. et al. (2009). Decision Support Methods. In: Pacheco, M.A.C., Vellasco, M.M.B.R. (eds) Intelligent Systems in Oil Field Development under Uncertainty. Studies in Computational Intelligence, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93000-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-93000-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92999-4

  • Online ISBN: 978-3-540-93000-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics