Skip to main content

Towards Inexpensive BCI Control for Wheelchair Navigation in the Enabled Environment – A Hardware Survey

  • Conference paper
Book cover Brain Informatics (BI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6334))

Included in the following conference series:

Abstract

This study attempts to support further research into the development of practical and inexpensive non-invasive brain-computer interface systems for the control of prosthetic devices, especially electric wheelchairs. With motivations from literature, the steady state visual evoked potential is reasoned to be the neurological mechanism for a proposed modular-based BCI system. Selected papers on surveys of BCI research and BCI designs are mentioned. Available acquisition hardware for BCI-interfaces, with particular attention to non-invasive electroencephalogram (EEG) acquisition, are presented with a selection of articles reporting their use. In conclusion, some suggestions for further study towards practical BCI systems are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NeuroSky: BCI technology grounded in laboratory research (2010), http://company.neurosky.com/university/

  2. Emotiv: Become an Emotiv Researcher (2010), http://www.emotiv.com/researchers/

  3. nia Game Controller OCZ Technology (2010), http://www.ocztechnology.com/products/ocz_peripherals/nia-neural_impulse_actuator

  4. Bashashati, A., Fatourechi, M., Ward, R.K., Birch, G.E.: A survey of signal processing algorithms in

    Google Scholar 

  5. Garcia, G.: High frequency SSVEPs for BCI applications (2008)

    Google Scholar 

  6. Wang, Y., Wang, R., Gao, X., Hong, B., Gao, S.: A practical VEP-based brain-computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14, 234–240 (2006)

    Article  Google Scholar 

  7. Mason, S.G., Birch, G.E.: A general framework for brain-computer interface design. IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 11, 70–85 (2003)

    Article  Google Scholar 

  8. Quitadamo, L., Abbafati, M., Saggio, G., Marciani, M., Cardarilli, G., Bianchi, L.: A UML model for the description of different brain-computer interface systems. Engineering in Medicine and Biology Society. In: 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2008, pp. 1363–1366 (2008)

    Google Scholar 

  9. Mason, S.G., Bashashati, A., Fatourechi, M., Navarro, K.F., Birch, G.E.: A comprehensive survey of brain interface technology designs. Annals of biomedical engineering 35, 137–169 (2007)

    Article  Google Scholar 

  10. Beverina, F., Palmas, G., Silvoni, S., Piccione, F., Giove, S.: User adaptive BCIs: SSVEP and P300 based interfaces. PsychNology Journal 1, 331–354 (2003)

    Google Scholar 

  11. Wu, Z., Lai, Y., Xia, Y., Wu, D., Yao, D.: Stimulator selection in SSVEP-based BCI. Medical engineering & physics 30, 1079–1088 (2008)

    Article  Google Scholar 

  12. Yang, R., Gray, D.A., Ng, B.W., He, M.: Comparative analysis of signal processing in brain computer interface. In: Proceedings of the 4th IEEE Conference on ICIEA 2009, pp. 580–585: IEEE Xplore (2009); brain-computer interfaces based on electrical brain signals. Journal of neural engineering 4, R32–R57 (2007)

    Google Scholar 

  13. the modulareeg (2008), http://openeeg.sourceforge.net/doc/modeeg/modeeg.html

  14. Lotte, F., Congedo, M., Lcuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. Journal of neural engineering 4, R1–R13 (2007)

    Google Scholar 

  15. Lin, C., Ko, L., Chang, M., Duann, J., Chen, J., Su, T., Jung, T.: Review of Wireless and Wearable Electroencephalogram Systems and Brain-Computer Interfaces – A Mini-Review. Gerontology, 112–119 (2010)

    Google Scholar 

  16. Wang, Y., Gao, X., Hong, B., Jia, C., Gao, S.: Brain–Computer Interfaces Based on Visual Evoked Potentials. IEEE Engineering in Medicine and Biology Magazine 65 (2008)

    Google Scholar 

  17. Wolpaw, J.R., Birbaumer, N., Heetderks, W.J., McFarland, D.J., Peckham, P.H., Schalk, G., Donchin, E., Quatrano, L.A., Robinson, C.J., Vaughan, T.M.: Brain-computer interface technology: a review of the first international meeting. IEEE transactions on rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 8, 164–173 (2000)

    Article  Google Scholar 

  18. Wolpaw, J.R., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  19. van Beelen, T.: 12 channel EEG amplifier (2010), http://www.teuniz.net/12-ch_EEG_amplifier/index.html

  20. van Beelen, T.: 12 channel ADC-box (2010), http://www.teuniz.net/12-ch_ADC-board/index.html

  21. soundcardeeg (sceeg) prototype (2010), http://openeeg.sourceforge.net/doc/hw/sceeg/

  22. Trevisan, A.A., Jones, L.: A low-end device to convert EEG waves to music. Journal of the Audio Engineering Society (2010)

    Google Scholar 

  23. Ko, M., Bae, K., Oh, G., Ryu, T.: A Study on New Gameplay Based on Brain-Computer Interface. In: Proceedings of DiGRA 2009 (2009)

    Google Scholar 

  24. Lin, C., Ko, L., Chiou, J., Duann, J., Huang, R., Liang, S., Chiu, T., Jung, T.: Noninvasive Neural Prostheses Using Mobile and Wireless EEG. Proceedings of the IEEE 96, 1167–1183 (2008)

    Article  Google Scholar 

  25. Ribeiro, A., Sirgado, A., Aperta, J., Lopes, A.: A low-cost eeg stand-alone device for brain computer interface. In: BIODEVICES 2009 International Conference on Biomedical Electronics and Devices, pp. 430–433. INSTICC (2009)

    Google Scholar 

  26. Portelli, A.J., Nasuto, S.J.: Toward Construction of an Inexpensive Brain Computer Interface for Goal Oriented Applications. In: AISB (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stamps, K., Hamam, Y. (2010). Towards Inexpensive BCI Control for Wheelchair Navigation in the Enabled Environment – A Hardware Survey. In: Yao, Y., Sun, R., Poggio, T., Liu, J., Zhong, N., Huang, J. (eds) Brain Informatics. BI 2010. Lecture Notes in Computer Science(), vol 6334. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15314-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15314-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15313-6

  • Online ISBN: 978-3-642-15314-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics