Skip to main content

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments

  • Chapter
Book cover Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 79))

Abstract

RGB-D cameras are novel sensing systems that capture RGB images along with per-pixel depth information. In this paper we investigate how such cameras can be used in the context of robotics, specifically for building dense 3D maps of indoor environments. Such maps have applications in robot navigation, manipulation, semantic mapping, and telepresence. We present RGB-D Mapping, a full 3D mapping system that utilizes a novel joint optimization algorithm combining visual features and shape-based alignment. Visual and depth information are also combined for view-based loop closure detection, followed by pose optimization to achieve globally consistent maps.We evaluate RGB-D Mapping on two large indoor environments, and show that it effectively combines the visual and shape information available from RGB-D cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarzadeh, A., Frahm, J.M., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Merrell, P., Phelps, M., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H., Nistér, D., Pollefeys, M.: Towards urban 3D reconstruction from video. In: Proc. of the Third International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT) (2006)

    Google Scholar 

  2. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 14(2) (1992)

    Google Scholar 

  3. Canesta, http://www.canesta.com/

  4. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. Image Vision Comput. 10(3), 145–155 (1992)

    Article  Google Scholar 

  5. Clemente, L., Davison, A., Reid, I., Neira, J., Tardós, J.: Mapping large loops with a single hand-held camera. In: Proc. of Robotics: Science and Systems, RSS (2007)

    Google Scholar 

  6. Debevec, P., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: A hybrid geometryand image-based approach. In: SIGGRAPH (1996)

    Google Scholar 

  7. Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Reconstructing building interiors from images. In: Proc. of the International Conference on Computer Vision, ICCV (2009)

    Google Scholar 

  8. Furukawa, Y., Ponce, J.: Patch-based multi-view stereo software (PMVS), http://grail.cs.washington.edu/software/pmvs/

  9. Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard, W.: Estimation of accurate maximum likelihood maps in 3D. In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2007)

    Google Scholar 

  10. Grisetti, G., Stachniss, C., Grzonka, S., Burgard, W.: A tree parameterization for efficiently computing maximum likelihood maps using gradient descent. In: Proc. of Robotics: Science and Systems, RSS (2007)

    Google Scholar 

  11. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4(4), 629–642 (1987)

    Article  MathSciNet  Google Scholar 

  12. Mesa Imaging, http://www.mesa-imaging.ch/

  13. Johnson, A., Kang, S.B.: Registration and integration of textured 3-d data. In: International Conference on Recent Advances in 3-D Digital Imaging and Modeling (3DIM 1997), pp. 234–241 (May 1997)

    Google Scholar 

  14. Kim, Y.M., Theobalt, C., Diebel, J., Kosecka, J., Micusik, B., Thrun, S.: Multi-view image and ToF sensor fusion for dense 3D reconstruction. In: Workshop on 3-D Digital Imaging and Modeling (3DIM) (2009)

    Google Scholar 

  15. Konolige, K.: Projected texture stereo. In: Proc. of the IEEE International Conference on Robotics & Automation, ICRA (2010)

    Google Scholar 

  16. Konolige, K., Agrawal, M.: FrameSLAM: From bundle adjustment to real-time visual mapping. IEEE Transactions on Robotics 25(5) (2008)

    Google Scholar 

  17. Krainin, M., Henry, P., Ren, X., Fox, D.: Manipulator and object tracking for in hand 3D object modeling. Technical Report UW-CSE-10-09-01, University of Washington (2010), http://www.cs.washington.edu/ai/Mobile_Robotics/projects/hand_tracking/

  18. Lowe, D.: Discriminative image features from scale-invariant keypoints. International Journal of Computer Vision 60(2) (2004)

    Google Scholar 

  19. May, S., Dröschel, D., Holz, D., Fuchs, E., Malis, S., Nüchter, A., Hertzberg, J.: Three-dimensional mapping with time-of-flight cameras. Journal of Field Robotics (JFR) 26(11-12) (2009)

    Google Scholar 

  20. Microsoft (2010), http://www.xbox.com/en-US/kinect

  21. Newman, P., Sibley, G., Smith, M., Cummins, M., Harrison, A., Mei, C., Posner, I., Shade, R., Schröter, D., Murphy, L., Churchill, W., Cole, D., Reid, I.: Navigating, recognising and describing urban spaces with vision and laser. International Journal of Robotics Research (IJRR) 28(11-12) (2009)

    Google Scholar 

  22. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 26(6), 756–777 (2004)

    Article  Google Scholar 

  23. Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: Surface elements as rendering primitives. In: ACM Transactions on Graphics (Proc. of SIGGRAPH) (2000)

    Google Scholar 

  24. Pollefeys, M., Nister, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.-J., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewenius, H., Yang, R., Welch, G., Towles, H.: Detailed real-time urban 3D reconstruction from video. International Journal of Computer Vision 72(2), 143–167 (2008)

    Article  Google Scholar 

  25. PrimeSense, http://www.primesense.com/

  26. Ramos, F., Fox, D., Durrant-Whyte, H.: CRF-matching: Conditional random fields for feature-based scan matching. In: Proc. of Robotics: Science and Systems, RSS (2007)

    Google Scholar 

  27. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Third International Conference on 3D Digital Imaging and Modeling (2001)

    Google Scholar 

  28. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Proc. of Robotics: Science and Systems, RSS (2009)

    Google Scholar 

  29. Sharp, G.C., Lee, S.W., Wehe, D.K.: ICP registration using invariant features. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 24(1), 90–102 (2002)

    Article  Google Scholar 

  30. Snavely, N., Seitz, S., Szeliski, R.: Photo tourism: Exploring photo collections in 3D. In: ACM Transactions on Graphics (Proc. of SIGGRAPH) (2006)

    Google Scholar 

  31. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In: Proc. of the IEEE International Conference on Robotics & Automation, ICRA (2000)

    Google Scholar 

  32. Triebel, R., Burgard, W.: Improving simultaneous mapping and localization in 3D using global constraints. In: Proc. of the National Conference on Artificial Intelligence, AAAI (2005)

    Google Scholar 

  33. Wu, C.: SiftGPU: A GPU implementation of scale invariant feature transform, SIFT (2007), http://cs.unc.edu/~ccwu/siftgpu

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D. (2014). RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments. In: Khatib, O., Kumar, V., Sukhatme, G. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28572-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28572-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28571-4

  • Online ISBN: 978-3-642-28572-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics