Skip to main content

Visuelle Informationsverarbeitung

  • Chapter
  • First Online:
Allgemeine Psychologie

Zusammenfassung

Visuelle Wahrnehmungsprozesse kennzeichnen den bedeutendsten Sinn des Menschen, den Sehsinn bzw. Gesichtssinn. In der wissenschaftlichen Auseinandersetzung mit diesem Thema wird untersucht, wie die Informationen unserer physikalischen Umwelt (distaler Reiz) von den Sinnesrezeptoren des Auges (proximaler Reiz) aufgenommen und kognitiv verarbeitet werden, um so den Wahrnehmungseindruck hervorzurufen, der unser Erleben und Verhalten maßgeblich beeinflusst. Das vorliegende Kapitel beschreibt die Prozesse der elementaren Encodierungsprozesse bis hin zu den Prozessen der Objektidentifizierung und schließt mit einer kurzen Skizzierung der wichtigsten Wahrnehmungstheorien.

Schlüsselwörter: Visuelle Wahrnehmung; Farbwahrnehmung; Raum- und Tiefenwahrnehmung; Bewegungswahrnehmung; Objektwahrnehmung; Psychophysik; Gestaltwahrnehmung; Ökologische Wahrnehmung

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Algom, D., & Cohen-Raz, L. (1987). Sensory and cognitive factors in the processing of visual velocity. Journal of Experimental Psychology: Human Perception and Performance, 13, 3–13. doi:10.1037/0096-1523.13.1.3.

    PubMed  Google Scholar 

  • Badcock, D. R., & Westheimer, G. (1985). Spatial location and hyperacuity: The centre/surround localization contribution function has two substrates. Vision Research, 25, 1259–1267. doi:10.1016/0042-6989(85)90041-0.

    Article  PubMed  Google Scholar 

  • Baldo, M. V. C., Ranvaud, R. D., & Morya, E. (2002). Flag errors in soccer games: the flash-lag effect brought to real life. Perception, 31, 1205–1210. doi:10.1068/p3422.

    Article  PubMed  Google Scholar 

  • Barlow, H. B., & Hill, R. M. (1963). Evidence for a physiological explanation of the waterfall phenomenon and figural after-effects. Nature, 200(200), 1345–1347. doi:10.1038/2001345a0.

    Article  PubMed  Google Scholar 

  • Bear, M. F., Conners, B. W., & Paradiso, M. A. (2009). Neurowissenschaften. Ein grundlegendes Lehrbuch für Biologie, Medizin und Psychologie. Heidelberg: Spektrum Akademischr Verlag, Springer.

    Google Scholar 

  • Beck, J. (1966). Effect of orientation and shape similarity in perceptual grouping. Perception and Psychophysics, 1, 300–302. doi:10.3758/BF03215792.

    Article  Google Scholar 

  • Berry, M. J., Brivanlou, I. H., Jordan, T. A., & Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature, 398(6725), 334–338. doi:10.1038/18678.

    Article  PubMed  Google Scholar 

  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147. doi:10.1037/0033-295X.94.2.115.

    Article  PubMed  Google Scholar 

  • Biederman, I. (1995). Visual object recognition. In S. M. Kosslyn, & D. N. Osherson (Hrsg.), Visual cognition: An invitation to cognitive science (S. 121–165). Cambridge, MA: MIT Press.

    Google Scholar 

  • Biederman, I. (2000). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 13, 241–253. doi:10.1163/156856800741063.

    Article  PubMed  Google Scholar 

  • Bocianski, D., Müsseler, J., & Erlhagen, W. (2008). Relative mislocalization of successively presented stimuli. Vision Research, 48, 2204–2212. doi:10.1016/j.visres.2008.06.016.

    Article  PubMed  Google Scholar 

  • Bocianski, D., Müsseler, J., & Erlhagen, W. (2010). Effects of attention on a relative mislocalization with successively presented stimuli. Vision Research, 50, 1793–1802. doi:10.1016/j.visres.2010.05.036.

    Article  PubMed  Google Scholar 

  • Borst, A., Haag, J., & Reiff, D. F. (2010). Fly motion vision. Annual Review of Neuroscience, 33, 49–70. doi:10.1146/annurev-neuro-060909-153155.

    Article  PubMed  Google Scholar 

  • Brown, J. F. (1931). The visual perception of velocity. Psychologische Forschung, 14, 199–232. doi:10.1007/BF00403873.

    Article  Google Scholar 

  • Bruce, V., Green, P. R., & Georgeson, M. A. (1996). Visual perception. Physiology, psychology, and ecology. East Sussex, UK: Psychology Press.

    Google Scholar 

  • Bruner, J. S. (1957). On perceptual readiness. Psychological Review, 64, 123–152. doi:10.1037/h0043805.

    Article  PubMed  Google Scholar 

  • Buchner, A., Brandt, M., Bell, R., & Weise, J. (2006). Car backlight position and fog density bias observer-car distance estimates and time-to-collision judgments. Human Factors, 48, 300–317.

    Article  PubMed  Google Scholar 

  • Cowey, A., & Rolls, E. T. (1974). Human cortical magnification factor and its relation to visual acuity. Experimental Brain Research, 21, 447–454. doi:10.1007/BF00237163.

    Article  PubMed  Google Scholar 

  • Dartnall, H. J. A., Bowmaker, J. K., & Mollon, J. D. (1983). Human visual pigments: Microspetrophometric results from the eyes of seven persons. Proceedings of the Royal Society of London, 220B, 115–130. doi:10.1098/rspb.1983.0091.

    Article  Google Scholar 

  • DeAngelis, G. C. (2000). Seeing in three dimensions: the neurophysiology of stereopsis. Trends in Cognitive Sciences, 4, 80–90. doi:10.1016/S1364-6613(99)01443-6.

    Article  PubMed  Google Scholar 

  • DeValois, R. L., & Jacobs, G. H. (1968). Primate color vision. Science, 162, 533–540. doi:10.1126/science.162.3853.533.

    Article  Google Scholar 

  • DeYoe, E. A., & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuorscience, 11, 219–226. doi:10.1016/0166-2236(88)90130-0.

    Article  Google Scholar 

  • Ditzinger, T. (2006). Illusionen des Sehens. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Dowling, J. E., & Boycott, B. B. (1966). Organization of the primate retina: electron microscopy. Proceedings of the Royal Society of London, 166B, 80–111. doi:10.1098/rspb.1966.0086.

    Article  Google Scholar 

  • Drasdo, N. (1977). The neural representation of visual space. Nature, 266, 552–556. doi:10.1038/266554a0.

    Article  Google Scholar 

  • Driver, J., & Baylis, G. C. (1995). One-sided edge assignment in vision. II. Part decomposition, shape description, and attention to objects. Current Directions in Psychological Science, 4, 201–206. doi:10.1111/1467-8721.ep10772645.

    Article  Google Scholar 

  • Driver, J., & Baylis, G. C. (1996). Edge-assignment and figure-ground segmentation in short-term visual matching. Cognitive Psychology, 31, 248–306. doi:10.1006/cogp.1996.0018.

    Article  PubMed  Google Scholar 

  • Epstein, W., & Rogers, S. J. (Hrsg.). (1995). Perception of space and motion. San Diego, CA: Academic Press, Inc..

    Google Scholar 

  • Erlhagen, W. (2003). Internal models for visual perception. Biological Cybernetics, 88, 409–417. doi:10.1007/s00422-002-0387-1.

    Article  PubMed  Google Scholar 

  • Erlhagen, W., & Jancke, D. (2004). The role of action plans and other cognitive factors in motion extrapolation: A modelling study. Visual Cognition, 11, 315–340. doi:10.1080/13506280344000293.

    Article  Google Scholar 

  • Erlhagen, W., Bastian, A., Jancke, D., Riehle, A., & Schöner, G. (1999). The distribution of neuronal population activation (DPA) as a tool to study interaction and integration in cortical representations. Journal of Neuroscience Methods, 94, 53–66. doi:10.1016/S0165-0270(99)00125-9.

    Article  PubMed  Google Scholar 

  • Fechner, G. T. (1860). Elemente der Psychophysik. Leipzig: Breitkopf und Härtel.

    Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierachical processing in the primate visual cortex. Cerebral Cortex, 1, 1–47. doi:10.1093/cercor/1.1.1-a.

    Article  PubMed  Google Scholar 

  • Finney, D. J. (1971). Probit analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Flannagan, M. J., Sivak, M., Schumann, J., Traube, E. C., & Kojima, S. (1997). Distance perception in driverside and passenger-side convex rearview mirrors: Objects in mirrors are more complicated than they appear. Bd. UMTRI-97–32. Ann Arbor: The University of Michigan Transportation, Research Institute.

    Google Scholar 

  • Freyd, J. J., & Finke, R. A. (1984). Representational momentum. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 126–132. doi:10.1037/0278-7393.10.1.126.

    Google Scholar 

  • Fröhlich, F. W. (1923). Über die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie, 54, 58–78. doi:10.1007/bf01723521.

    Google Scholar 

  • Gegenfurtner, K. R. (2012). Farbwahrnehmung und ihre Störungen. In H. O. Karnath, & P. Thier (Hrsg.), Kognitive Neurowissenschaften (S. 45–52). Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Gegenfurtner, K. R., & Sharpe, L. T. (2000). Color vision: from genes to perception. New York: Cambridge University Press.

    Google Scholar 

  • Gibson, J. J. (1950). The perception of the visual world. Boston: Houghton Mifflin.

    Google Scholar 

  • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.

    Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Goebel, R., Roebroeck, A., Kim, D.-S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging, 21, 1251–1261. doi:10.1016/j.mri.2003.08.026.

    Article  PubMed  Google Scholar 

  • Goldstein, E. B. (2015). Wahrnehmungspsychologie. Eine Einführung. Berlin, Heidelberg: Springer. Deutsche Ausgabe herausgegeben von K. R. Gegenfurtner

    Google Scholar 

  • Gordon, I. E. (2004). Theories of visual perception. New York: Psychology Press.

    Google Scholar 

  • Green, M., & Odom, J. V. (1986). Correspondence matching in apparent motion – Evidence for 3-dimensional spatial representation. Science, 233(4771), 1427–1429. doi:10.1126/science.3749887.

    Article  PubMed  Google Scholar 

  • Grunewald, A., & Lankheet, M. J. M. (1996). Orthogonal motion after-effect illusion predicted by a model of cortical motion processing. Nature, 384(6607), 358–360. doi:10.1038/384358a0.

    Article  PubMed  Google Scholar 

  • Grunewald, A., & Mingolla, E. (1998). Motion after-effect due to binocular sum of adaptation to linear motion. Vision Research, 38, 2963–2971. doi:10.1016/S0042-6989(98)00102-3.

    Article  PubMed  Google Scholar 

  • Hahnel, U. J. J., & Hecht, H. (2012). The impact of rear-view mirror distance and curvature on judgements relevant to road safety. Ergonomics, 55, 23–36. doi:10.1080/00140139.2011.638402.

    Article  PubMed  Google Scholar 

  • Hartline, H. K., Wagner, H. G., & Ratliff, F. (1956). Inhibition in the eye of Limulus. Journal of General Physiology, 39, 651–673. doi:10.1085/jgp.39.5.651.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazelhoff, F. F., & Wiersma, H. (1924). Die Wahrnehmungszeit. Zeitschrift für Psychologie, 96, 171–188.

    Google Scholar 

  • Hecht, H., & Brauer, J. (2007). Convex rear view mirrors compromise distance and time-to-contact judgements. Ergonomics, 50, 601–614.

    Article  PubMed  Google Scholar 

  • Helmholtz, H. v. (1866/1910). Handbuch der physiologischen Optik. 3. Aufl. ergänzt und hrsg. von W. Nagel, A. Gullstrand und J. von Kries. Hamburg: Voss.

    Google Scholar 

  • Hess, C., & Pretori, H. (1894). Messende Untersuchungen über die Gesetzmässigkeit des simultanen Helligkeits-Contrastes. Archiv für Ophthalmologie, 40, 1–24. doi:10.1007%2FBF01693963

    Google Scholar 

  • Hubbard, T. L. (2005). Representational momentum and related displace-ments in spatial memory: A review of the findings. Psychonomic Bulletin & Review, 12, 822–851. doi:10.3758/BF03196775.

    Article  Google Scholar 

  • Hubbard, T. L. (2014a). Forms of momentum across space: Representational, operational, and attentional. Psychonomic Bulletin & Review, 21, 1371–1403. doi:10.3758/s13423-014-0624-3.

    Article  Google Scholar 

  • Hubbard, T. L. (2014b). The flash-lag effect and related mislocalizations: Findings, properties, and theories. Psychological Bulletin, 140, 308–338. doi:10.1037/a0032899.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat’s striate cortex. Journal of Physiology, 148, 574–591. doi:10.1113/jphysiol.1959.sp006308.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey straite cortex. Journal of Physiology, 195, 215–243. doi:10.1113/jphysiol.1968.sp008455.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurvich, L. M., & Jameson, D. (2001). An opponent-process theory of color vision. In S. Yantis (Hrsg.), Visual perception (S. 129–146). Philadelphia, PA: Psychology Press.

    Google Scholar 

  • Jancke, D., & Erlhagen, W. (2010). Bridging the gap: A model of common neural mechanisms underlying the Fröhlich effect, the flash-lag effect, and the representational momentum effect. In R. Nijhawan, & B. Khurana (Hrsg.), Space and time in perception and action. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jäncke, L. (2005). Bildgebende Verfahren in der Psychologie und den kognitiven Neurowissenschaften. Stuttgart: Kohlhammer Verlag.

    Google Scholar 

  • Jordan, J. S., Stork, S., Knuf, L., Kerzel, D., & Müsseler, J. (2002). Action planning affects spatial localization. In W. Prinz, & B. Hommel (Hrsg.), Attention and Performance XIX: Common mechanisms in perception and action (S. 158–176). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Julesz, B. (1971). Foundation of cyclopean perception. Chicago: University of Chicago Press.

    Google Scholar 

  • Julesz, B. (1981). Textons, the elements of texture perception and their interaction. Nature, 290, 91–97. doi:10.1038/290091a0.

    Article  PubMed  Google Scholar 

  • Kahneman, D., Norman, J., & Kubovy, M. (1967). Critical duration for resolution of form – centrally or peripherally determined. Journal of Experimental Psychology, 73, 323–327. doi:10.1037/h0024257.

    Article  PubMed  Google Scholar 

  • Kandel, E. R. (1996). Die Konstruktion des visuellen Bildes. In E. R. Kandel, & J. H. S. T. M. Jessel (Hrsg.), Neurowissenschaften: Eine Einführung (S. 393–411). Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kanisza, G. (1979). Organization in vision: Essays on Gestalt perception. New York: Praeger.

    Google Scholar 

  • Kehrer, L. (1997). The central performance drop in texture segmentation: a simulation based on a spatial filter model. Biological Cybernetics, 77, 297–305. doi:10.1007/s004220050391.

    Article  Google Scholar 

  • Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40, 3703–3715. doi:10.1016/S0042-6989(00)00226-1.

    Article  PubMed  Google Scholar 

  • Kerzel, D. (2010). The Fröhlich effect: Historical notes and relation to the flash-lag, current theories and reconciliation with the onset repulsion effect. In R. Nijhawan, & B. Khurana (Hrsg.), Space and Time in Perception and Action (S. 321–337). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Kerzel, D., & Müsseler, J. (2002). Effects of stimulus material on the Fröhlich illusion. Vision Research, 42, 181–189. doi:10.1016/S0042-6989(01)00271-1.

    Article  PubMed  Google Scholar 

  • Kerzel, D., Jordan, J. S., & Müsseler, J. (2001). The role of perceptual anticipation in the mislocalization of the final position of a moving target. Journal of Experimental Psychology: Human Perception and Performance, 27, 829–840. doi:10.1037/0096-1523.27.4.829.

    PubMed  Google Scholar 

  • Kimchi, R., & Navon, D. (2000). Relative judgment seems to be the key: Revisiting the Beck effect. Journal of Experimental Psychology: Human Perception and Performance, 26, 789–805. doi:10.1037/0096-1523.26.2.789.

    PubMed  Google Scholar 

  • Kirschfeld, K., & Kammer, T. (1999). The Fröhlich effect: A consequence of the interaction of visual focal attention and metacontrast. Vision Research, 39, 3702–3709. doi:10.1016/S0042-6989(99)00089-9.

    Article  PubMed  Google Scholar 

  • Koenderink, J. J. (1990). The brain a geometry engine. Special Issue: Domains of mental functioning: Attempts at a synthesis. Psychological Research, 52, 122–127. doi:10.1007/BF00877519.

    Article  PubMed  Google Scholar 

  • Koffka, K. (1935). Principles of Gestalt psychology. New York: Hartcourt Brace.

    Google Scholar 

  • Kohler, I. (1962). Experiments with goggles. Scientific American, 206, 63–72. doi:10.1038/scientificamerican0562-62.

    Article  Google Scholar 

  • Köhler, W. (1958). Dynamische Zusammenhänge in der Psychologie. Bern: Huber.

    Google Scholar 

  • Kolers, P. A. (1974). The illusion of movement. In R. Held, & W. Richards (Hrsg.), Perception: Mechanism and models (S. 316–323). San Francisco, CA: Freeman.

    Google Scholar 

  • Krekelberg, B., & Lappe, M. (2000). A model of the perceived relative positions of moving objects based upon a slow averaging process. Vision Research, 40, 201–215. doi:10.1016/S0042-6989(99)00168-6.

    Article  PubMed  Google Scholar 

  • Krueger, L. E. (1975). Familiarity effects in visual information processing. Psychological Bulletin, 82, 949–974. doi:10.1037/0033-2909.82.6.949.

    Article  PubMed  Google Scholar 

  • LeVay, S., & Voigt, T. (1988). Ocular dominance and disparity coding in cat visual cortex. Visual Neuroscience, 1, 395–414. doi:10.1017/S0952523800004168.

    Article  PubMed  Google Scholar 

  • Lieberman, H. R. (1983). Computation of psychological thresholds using the probit technique. Behavior Research Methods and Instrumentation, 15, 446–448. doi:10.3758/BF03203681.

    Article  Google Scholar 

  • Lieberman, H. R., & Pentland, A. P. (1982). Microcomputer-based estimation of psychophysical thresholds: The best PEST. Behavior Research Methods and Instrumentation, 14, 21–25. doi:10.3758/BF03202110.

    Article  Google Scholar 

  • Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user’s guide (2. Aufl.). Mahwah, New Jersey London: Lawrence Erlbaum Associates.

    Google Scholar 

  • Maertens, M., & Pollmann, S. (2005). fMRI reveals a common neural substrate of illusory and real contours in V1 after perceptual learning. Journal of Cognitive Neuroscience, 17, 1553–1564. doi:10.1162/089892905774597209.

    Article  PubMed  Google Scholar 

  • Maisak, M. S., et al. (2013). A directional tuning map of Drosophila elementary motion detectors. Nature, 500, 212–216. doi:10.1038/nature12320.

    Article  PubMed  Google Scholar 

  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York: Freeman and Company.

    Google Scholar 

  • Marr, D., & Poggio, T. (1979). A computational theory of human stereo vision. Proceedings of the Royal Society of London, B 204, 301–328. doi:10.1098/rspb.1979.0029.

    Article  PubMed  Google Scholar 

  • Mashour, M. (1964). Psychophysical relations in the perception of velocity. Stockholm: Almquist and Wiksell.

    Google Scholar 

  • Meinecke, C., & Kehrer, L. (1994). Peripheral and foveal segmentation of angle textures. Perception and Psychophysics, 56, 326–334. doi:10.3758/BF03209766.

    Article  PubMed  Google Scholar 

  • Merigan, W. H., & Maunsell, J. H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–403. doi:10.1146/annurev.ne.16.030193.002101.

    Article  PubMed  Google Scholar 

  • Metzger, W. (1932). Versuch einer gemeinsamen Theorie der Phänomene Fröhlichs und Hazeloffs und Kritik ihrer Verfahren zur Messung der Empfindungszeit. Psychologische Forschung, 16, 176–200. doi:10.1007/BF00409732.

    Article  Google Scholar 

  • Metzger, W. (1966). Figurale Wahrnehmung. In W. Metzger (Hrsg.), Handbuch der Psychologie (Bd. 1, S. 693–744). Göttingen: Hogrefe.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.

    Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neuroscience, 6, 414–417. doi:10.1016/0166-2236(83)90190-X.

    Article  Google Scholar 

  • Müller, H. J., & Rabbitt, P. M. (1989). Spatial cueing and the relation between the accuracy of „where“ and „what“ decisions in visual search. Quarterly Journal of Experimental Psychology, 41A, 747–773. doi:10.1080/14640748908402392.

    Article  Google Scholar 

  • Müsseler, J. (1999a). How independent from action control is perception? An event-coding account for more equally-ranked crosstalks. In G. Aschersleben, & T. B. J. Müsseler (Hrsg.), Cognitive contributions to the perception of spatial and temporal events (S. 121–147). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Müsseler, J. (1999b). Perceiving and measuring of spatiotemporal events. In S. Jordan (Hrsg.), Modeling consciousness across the disciplines (S. 95–112). Lanham, Maryland: University Press of America, Inc.

    Google Scholar 

  • Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception and Psychophysics, 60, 683–695. doi:10.3758/BF03206055.

    Article  PubMed  Google Scholar 

  • Müsseler, J., & Kerzel, D. (2016). Mislocalizing the onset position of moving stimuli. In T. L. Hubbard (Hrsg.), Spatial Biases in Perception and Cognition. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Müsseler, J., & Tiggelbeck, J. (2013). The perceived onset position of a moving target: Effects of trial contexts are evoked by different attentional allocations. Attention, Perception, & Psychophysics, 75, 349–357. doi:10.3758/s13414-012-0397-6.

    Article  Google Scholar 

  • Müsseler, J., & Van der Heijden, A. H. C. (2004). Two spatial maps contributing to perceived space. Evidence from a relative mislocalization. Visual Cognition, 11, 235–254. doi:10.1080/13506280344000338.

    Article  Google Scholar 

  • Müsseler, J., Van der Heijden, A. H. C., Mahmud, S. H., Deubel, H., & Ertsey, S. (1999). Relative mislocalizations of briefly presented stimuli in the retinal periphery. Perception and Psychophysics, 61, 1646–1661. doi:10.3758/BF03213124.

    Article  PubMed  Google Scholar 

  • Müsseler, J., Steininger, S., & Wühr, P. (2001). Can actions affect perceptual processing? The Quarterly Journal of Experimental Psychology, 54A, 137–154. doi:10.1080/02724980042000057.

    Article  Google Scholar 

  • Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations in movement direction: The Fröhlich effect, the flash-lag effect and representational momentum. Visual Cognition, 9, 120–138. doi:10.1080/13506280143000359.

    Article  Google Scholar 

  • Nakayama, K. (1994). James J. Gibson: An appreciation. Psychological Review, 101, 329–335. doi:10.1037/0033-295X.101.2.329.

    Article  PubMed  Google Scholar 

  • Neisser, U. (1967). Cognitive Psychology. New York: Meredith Corporation.

    Google Scholar 

  • Nijhawan, R. (1994). Motion extrapolation in catching. Nature, 370, 256–257. doi:10.1038/370256b0.

    Article  PubMed  Google Scholar 

  • Nothdurft, H. C. (1990). Texture discrimination by cells in the cat lateral geniculate nucleus. Experimental Brain Research, 82, 48–66. doi:10.1007/BF00230837.

    Article  PubMed  Google Scholar 

  • Oudejans, R. R. D., Verheijen, R., Bakker, F. C., Gerrits, J. C., Steinbrückner, M., & Beek, P. J. (2000). Errors in judging ‘offside’ in football. Nature,, 404, 33.

    Article  Google Scholar 

  • Palmer, S. E. (1992). Common region: A new principle of perceptual grouping. Cognitive Psychology, 24, 436–447. doi:10.1016/0010-0285(92)90014-S.

    Article  PubMed  Google Scholar 

  • Palmer, S. E. (1999). Vision science. Photons to phenomenology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin and Review, 1, 29–55. doi:10.3758/BF03200760.

    Article  PubMed  Google Scholar 

  • Pentland, A. P. (1980). The Best PEST, a maximum-likelihood parameter estimation procedure. Perception and Psychophysics, 28, 377–379.

    Article  PubMed  Google Scholar 

  • Pizlo, Z. (1994). A theory of shape constancy based on perspective invariants. Vision Research, 34, 1637–1658. doi:10.1016/0042-6989(94)90123-6.

    Article  PubMed  Google Scholar 

  • Plessner, H., & Schallies, E. (2005). Judging the cross on rings: A matter of achieving shape sonstancy. Applied Cognitive Psychology, 19, 1145–1156. doi:10.1002/acp.1136.

    Article  Google Scholar 

  • Pylyshyn, Z. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22, 341–365. doi:10.1017/S0140525X99002022.

    PubMed  Google Scholar 

  • Quinlan, P. T., & Wilton, R. N. (1998). Grouping by proximity or similarity? Competition between the Gestalt principles in vision. Perception, 27, 417–430. doi:10.1068/p270417.

    Article  PubMed  Google Scholar 

  • Rock, I., Nijhawan, R., Palmer, S., & Tudor, L. (1992). Grouping based on phenomenal similarity of achromatic color. Perception, 21, 779–789. doi:10.1068/p210779.

    Article  PubMed  Google Scholar 

  • Rodgers, N. (1999). Unglaubliche optische Illusionen. Augsburg: Weltbild.

    Google Scholar 

  • Roelfsma, P. R., & Singer, W. (1998). Detecting connectedness. Cerebral Cortex, 85, 385–396. doi:10.1093/cercor/8.5.385.

    Article  Google Scholar 

  • Rossetti, Y., & Pisella, L. (2002). Several ‘vision for action’ systems: A guide to dissociating and integrating dorsal and ventral functions. In W. Prinz, & B. Hommel (Hrsg.), Attention and Performance XIX: Common mechanisms in perception and action (S. 62–119). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Rubin, E. (1921/2001). Figure and ground. In S. Yantis (Ed.), Visual perception (pp. 225–229; Auszug aus Rubin, E. (1921). Visuell wahrgenommene Figuren. Kopenhagen: Gyldendalske Boghandel). Philadelphia, PA: Psychology Press.

    Google Scholar 

  • Sagi, D. (1995). The psychophysics of texture segmentation. In T. V. Papathomas, & C. Chubb (Hrsg.), Early vision and beyond (S. 69–78). Cambridge, MA: MIT Press.

    Google Scholar 

  • Schiller, P. H., Logothetis, N. K., & Charles, E. R. (1990). Functions of the colour-opponent and broad-band channels of the visual system. Nature, 343, 68–70. doi:10.1038/343068a0.

    Article  PubMed  Google Scholar 

  • Schrauf, M., Lingelbach, B., & Wist, E. R. (1997). The scintillating grid illusion. Vision Research, 37, 1033–1038. doi:10.1016/S0042-6989(96)00255-6.

    Article  PubMed  Google Scholar 

  • Seckel, A. (2014). Optische Illusionen: Sie werden Ihren Augen nicht trauen! Fränkisch-Crumbach: Edition XXL Verlag.

    Google Scholar 

  • Selfridge, O. G. (1959). Pandemonium: A Paradigm for learning. Proceedings of Mechanisation of Thought Processes, Bd. 1, S. 513–530). London: Her Majesty’s Stationary Office.

    Google Scholar 

  • Shaw, R. E., Flascher, O. M., & Mace, W. M. (1995). Dimensions of event perception. In W. Prinz, & B. Bridgeman (Hrsg.), Perception Handbook of perception and action, (Bd. 1, S. 345–395). London, UK: Academic Press.

    Chapter  Google Scholar 

  • Shen, J., & Reingold, E. M. (2001). Visual search asymmetry: The influence of stimulus familiarity and low-level features. Perception and Psychophysics, 63, 464–475. doi:10.3758/BF03194413.

    Article  PubMed  Google Scholar 

  • Singer, W. (1994). The organization of sensory motor representations in the Neocortex: A hypothesis based on temporal binding. In C. Umiltà, & M. Moscovitch (Hrsg.), Attention and Performance XV: Conscious and nonconscious information processing (S. 77–107). Cambridge, MA: MIT Press.

    Google Scholar 

  • Singer, W., Engel, A. K., Kreiter, A. K., Munk, M. H. J., Neuenschwander, S., & Roelfsema, P. R. (1997). Neuronal assemblies: necessity, signature and detectability. Trends in Cognitive Sciences, 1, 252–261. doi:10.1016/S1364-6613(97)01079-6.

    Article  PubMed  Google Scholar 

  • Skavenski, A. A. (1990). Eye movement and visual localization of objects in space. In E. Kowler (Hrsg.), Eye movements and their role in visual and cognitive processes (S. 263–287). Amsterdam: Elsevier.

    Google Scholar 

  • Spillmann, L. (1994). The Hermann grid illusion: A tool for studying human perceptive field organization. Perception, 23, 691–708. doi:10.1068/p230691.

    Article  PubMed  Google Scholar 

  • Stevens, S. S. (1957). On the psychophysical law. Psychological Review, 64, 153–181. doi:10.1037/h0046162.

    Article  PubMed  Google Scholar 

  • Stevens, S. S. (1975). Psychophysics. New York: Wiley and Sons.

    Google Scholar 

  • Swets, J. A., Tanner, W. P., & Birdsall, T. G. (1961). Decision processes in perception. Psychological Review, 68, 301–340. doi:10.1037/h0040547.

    Article  PubMed  Google Scholar 

  • Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19, 109–139. doi:10.1146/annurev.neuro.19.1.109.

    Article  PubMed  Google Scholar 

  • Tessier-Lavigne, M., & Gouras, P. (1996). Farbe. In E. R. Kandel, & J. H. S. T. H. Jessell (Hrsg.), Neurowissenschaften. Eine Einführung (S. 459–475). Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97–136. doi:10.1016/0010-0285(80)90005-5.

    Article  PubMed  Google Scholar 

  • Tsal, Y., & Lavie, N. (1988). Attending to color and shape: the special role of location in selective visual processing. Perception and Psychophysics, 44, 15–21. doi:10.3758/BF03207469.

    Article  PubMed  Google Scholar 

  • Tyler, C. W. (1990). A stereoscopic view of visual processing streams. Vision Research, 30, 1877–1895. doi:10.1016/0042-6989(90)90165-H.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, & M. A. G. R. J. Mansfield (Hrsg.), Analysis of visual behavior (S. 549–580). Cambridge: MIT Press.

    Google Scholar 

  • Van der Heijden, A. H. C. (1992). Selective attention in vision. London: Routledge.

    Google Scholar 

  • Van der Heijden, A. H. C. (2004). Attention in Vision – Perception, Communication, and Action. London: Routledge.

    Google Scholar 

  • Van der Heijden, A. H. C., Wolters, G., & Brouwer, R. F. T. (1995). Response dependency and processing dependency of line orientation and position in a single-item task. Psychological Research, 58, 19–30. doi:10.1007/BF00447086.

    Article  Google Scholar 

  • Van der Heijden, A. H. C., Kurvink, A. G., De Lange, L., De Leeuw, F., & Van der Geest, J. N. (1996). Attending to color with proper fixation. Perception and Psychophysics, 58, 1224–1237. doi:10.3758/BF03207555.

    Article  PubMed  Google Scholar 

  • Van der Heijden, A. H. C., Müsseler, J., & Bridgeman, B. (1999). On the perception of position. In G. Aschersleben, T. Bachmann, & J. Müsseler (Hrsg.), Cognitive contributions to the perception of spatial and temporal events (S. 19–37). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Van Essen, D. C., & DeYoe, E. A. (1995). Concurrent processing. In I. M. S. Gazzaniga (Hrsg.), The cognitive neuroscience (S. 383–400). Cambridge, MA: MIT Press.

    Google Scholar 

  • Verri, A., Straforini, M., & Torre, V. (1992). Computational aspects of motion perception in natural and artificial visionsystems. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 337(1282), 429–443. doi:10.1098/rstb.1992.0119.

    Article  Google Scholar 

  • Wallach, H. (1948). Brightness constancy and the nature of achromatic colors. Journal of Experimental Psychology, 38, 310–324. doi:10.1037/h0053804.

    Article  PubMed  Google Scholar 

  • Wallach, H. (1959). The perception of motion. Scientific American, 201, 107–116. doi:10.1038/scientificamerican0759-56.

    Article  Google Scholar 

  • Walsh, V., & Kulikowski, J. (Hrsg.). (1998). Perceptual constancy: Why things look as they do. New York: Cambridge University Press.

    Google Scholar 

  • Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift für Psychologie, 61, 262–265.

    Google Scholar 

  • Wertheimer, M. (1923). Untersuchungen zur Lehre der Gestalt, II. Psychologische Forschung, 5, 301–350. doi:10.1007/BF00410640.

    Article  Google Scholar 

  • Westheimer, G. (1981). Visual hyperacuity. Progress in Sensory Physiology (S. 1–30). Berlin: Springer.

    Book  Google Scholar 

  • Whitney, D., Murakami, I., & Cavanagh, P. (2000). Illusory spatial offset of a flash relative to a moving stimulus is caused by differential latencies for moving and flashed stimuli. Vision Research, 40, 137–149. doi:10.1016/S0042-6989(99)00166-2.

    Article  PubMed  Google Scholar 

  • Wirtz, M. (2001). Der Einfluss der Kantenkontrastverarbeitung auf die wahrgenommene Helligkeit angrenzender Flächen. München: Herbter Utz Verlag.

    Google Scholar 

  • Wolff, P. (1999). Space perception and the intention of action. In G. Aschersleben, & T. B. J. Müsseler (Hrsg.), Cognitive contributions to the perception of spatial and temporal events (S. 43–63). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Yantis, S. (Hrsg.). (2001). Visual perception. Philadelphia, PA: Psychology Press.

    Google Scholar 

  • Zihl, J., Cramon, D. von, & Mai, N. (1983). Selective disturbance of movement vision after bilateral damage. Brain, 106, 313–340. doi:10.1093/brain/106.2.313.

    Article  PubMed  Google Scholar 

  • Zeki, S., Watson, J. D. G., Lueck, C. J., Firston, K. J., Kennard, C., & Frackowiak, R. S. J. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11, 641–649.

    PubMed  Google Scholar 

  • Zihl, J., Cramon, D. von, Mai, N., & Schmid, C. (1991). Disturbance of movement vision after bilateral posterior brain damage. Brain, 114, 2235–2252. doi:10.1093/brain/114.5.2235.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Müsseler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müsseler, J. (2017). Visuelle Informationsverarbeitung. In: Müsseler, J., Rieger, M. (eds) Allgemeine Psychologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53898-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53898-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53897-1

  • Online ISBN: 978-3-642-53898-8

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics