Skip to main content

Abstract

The present book presents selected results of the research project MultiMaK2 that has been carried out at the Research Campus Open Hybrid LabFactory in Wolfsburg, Germany. The project aimed at providing innovative engineering methods and tools that help to bring forward lightweight automotive body parts with low environmental impacts over their life cycle. The engineering of lightweight body parts is influenced by innovative materials and production technologies that enable new designs. However, the indluence on resulting life cycle impacts is not transparent at engineering stages. To bridge that gap, the project promotes an integrated Life Cycle Design & Engineering when engineering lightweight automotive body parts. Therefore, the research fields of body part design, body part manufacturing as well as a concurrent life cycle engineering are introduced, and key research demands are formulated. On this basis, the subsequent chapters of this book present research results of the MultiMaK2 project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso, E., Lee, T. M., Bjelkengren, C., Roth, R., & Kirchain, R. E. (2012). Evaluating the potential for secondary mass savings in vehicle lightweighting. Environmental Science and Technology, 46(5), 2893–2901. doi: https://doi.org/10.1021/es202938m

    Article  Google Scholar 

  • Alting, L. (1995). Life Cycle Engineering and Design. CIRP Annals - Manufacturing Technology, 44(2), 569–580. doi: https://doi.org/10.1016/S0007-8506(07)60504-6

    Article  Google Scholar 

  • Broch, F., Warsen, J., & Krinke, S. (2015). Implementing Life Cycle Engineering in Automotive Development as a Helpful Management Tool to Support Design for Environment. In G. Sonnemann & M. Margni (Eds.), Life Cycle Management (pp. 319–329). Springer. doi: https://doi.org/10.1007/978-94-017-7221-1

  • Buschhoff, Clemens; Brecher, C.; Emonts, M. (2016): High volume production of lightweight automotive structures. In: Michael Bargende, Hans-Christian Reuss und Jochen Wiedemann (Hg.): 16. Internationales Stuttgarter Symposium. Wiesbaden: Springer Fachmedien Wiesbaden, S. 213–226. DOI https://doi.org/10.1007/978-3-658-13255-2

  • Dröder, K.; Herrmann, C.; Raatz, A.; Große, T.; Schönemann, M.; Löchte, C. (2014): Symbiosis of plastics and metals: integrated manufacturing of functional lightweight structures in high-volume production. In: Kunststoffe im Automobil-bau. Mannheim, S. 31–44.

    Google Scholar 

  • EEA. (2018). Electric vehicles from life cycle and circular economy perspectives - TERM 2018: Transport and Environment Reporting Mechanism (TERM) report. doi: https://doi.org/10.2800/77428

  • Egede, P. (2017). Environmental Assessment of Lightweight Electric Vehicles. Cham: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-40277-2

    Book  Google Scholar 

  • Fischer, F.; Kleemann, S.; Vietor, T. (2014): Smart Production of Hybrid Material Automotive Structures at ForschungsCampus Wolfsburg in the “Open Hybrid LabFactory”. In: Conference proceedings - ITHEC 2014, 2nd International Conference & Exhibition on Thermoplastic Composites.

    Google Scholar 

  • Fleischer, J.; Teti, R.; Lanza, G.; Mativenga, P.; Möhring, H-C.; Caggiano, A. (2018): Composite materials parts manu-facturing. In: CIRP Annals 67 (2), S. 603–626. DOI: https://doi.org/10.1016/j.cirp.2018.05.005.

  • Goede, M., Stehlin, M., Rafflenbeul, L., Kopp, G., & Beeh, E. (2009). Super Light Car-lightweight construction thanks to a multi-material design and function integration. European Transport Research Review, 1(1), 5–10. doi: https://doi.org/10.1007/s12544-008-0001-2

    Article  Google Scholar 

  • Gude, M., Lieberwirth, H., Meschut, G., & Zäh, M. F. (2015). FOREL-Studie - Chancen und Herausforderungen im ressourceneffizienten Leichtbau für die Elektromobilität. Retrieved from http://plattform-forel.de/ (last visited 06.03.2020)

  • Gude, M., Lieberwirth, H., Merschut, G., Tekkaya, A. E., & Zäh, M. F. (2018). FOREL Studie 2018. Retrieved from https://plattform-forel.de/studie/ (last visited 06.03.2020)

  • Herrmann, C., Dewulf, W., Hauschild, M., Kaluza, A., Kara, S., Skerlos, S., & Engineering, L. C. (2018). Life cycle engineering of lightweight structures. CIRP Annals, 67(2), 651–672. doi: https://doi.org/10.1016/j.cirp.2018.05.008

    Article  Google Scholar 

  • Ingarao, G.; Di Lorenzo, R.; Micari, F. (2011): Sustainability issues in sheet met-al forming processes: an overview. In: Journal of Cleaner Production 19 (4), S. 337–347. DOI: https://doi.org/10.1016/j.jclepro.2010.10.005.

  • International Council on Clean Transportation Europe. (2018). EUROPEAN VEHICLE MARKET STATISTICS Pocketbook 2018/2019. Retrieved from https://www.theicct.org/sites/default/files/publications/ICCT_Pocketbook_2018_Final_20181205.pdf (last visited 06.03.2020)

  • Kaluza, A., Kleemann, S., Fröhlich, T., Herrmann, C., & Vietor, T. (2017). Concurrent Design & Life Cycle Engineering in Automotive Lightweight Component Development. Procedia CIRP, 66, 16–21. doi: https://doi.org/10.1016/j.procir.2017.03.293

    Article  Google Scholar 

  • Kaluza, A., Gellrich, S., Cerdas, F., Thiede, S., & Herrmann, C. (2018). Life Cycle Engineering Based on Visual Analytics. Procedia CIRP, 69, 37–42. doi: https://doi.org/10.1016/j.procir.2017.11.128

    Article  Google Scholar 

  • Kleemann, S., Inkermann, D., Bader, B., Türck, E., & Vietor, T. (2017). A Semi-Formal Approach to Structure and Access Knowledge for Multi-Material-Design. In 21st International Conference on Engineering Design (ICED17). doi: https://doi.org/10.24355/dbbs.084-201708301114

  • Klein, B. (2013). Leichtbau-Konstruktion. Wiesbaden: Springer Fachmedien Wiesbaden. doi: https://doi.org/10.1007/978-3-658-02272-3

    Book  Google Scholar 

  • Kothmann, M.H., Hillebrand, A. & Deinzer, G. (2018): Multi-material bodies for battery-electric vehicles. Lightweight des worldw 11, 6–13. DOI: https://doi.org/10.1007/s41777-018-0005-0.

    Article  Google Scholar 

  • Lehmhus, D., von Hehl, A., Kayvantash, K., Gradinger, R., Becker, T., Schimanski, K., & Avalle, M. (2015). Taking a downward turn on the weight spiral - Lightweight materials in transport applications. Materials and Design, 66(PB), 385–389. doi: https://doi.org/10.1016/j.matdes.2014.10.001

  • Maurer, S., Wittner, B., Sikorski, S., Fuchs, D., Brand, D., & Hug, T. (2014): Der Wunsch nach weniger. ATZextra, 19(8), 62–67. DOI: https://doi.org/10.1365/s35778-014-1221-9.

  • Volkswagen AG: MultiMaK2 - Entwicklung von Design- Und Bewertungstools Für Nutzungsgerecht Ökologisch Optimierte Multi-Material-KFZ-Bauteilkonzepte in Der Großserie, Teilprojekt: Bauteilidentifikation, LCA Fahrzeug-Nutzungsszenarien, Handbuch Multi-Materialbauweise : Schlussbericht : Förderprogramm: Förderinitiative Forschungscampus - Öffentlich-Private Partnerschaft Für Innovationen, Forschungscampus Open Hybrid LabFactory : Laufzeit Des Vorhabens von: 01.01.2015 Bis: 31.12.2018. [Volkswagen AG], 2019, doi: https://doi.org/10.2314/KXP:1693272911

  • Nestler, D. J. (2014). Beitrag zum Thema VERBUNDWERKSTOFFE - WERKSTOFFVERBUNDE.

    Google Scholar 

  • Seehafer, G. (2014): Karosseriestruktur des neuen Audi TT. ATZ Automobiltech Z 116, 56–61. DOI: https://doi.org/10.1007/s35148-014-0451-x.

    Article  Google Scholar 

  • Soo, V. K. (2018). Life Cycle Impact of Different Joining Decisions on Vehicle Recycling. doi: https://doi.org/10.25911/5d6907c5dd810.

  • Trautwein, T., Henn, S., & Rother, K. (2011). Weight Spiral adjusting Lever in Vehicle Engineering. ATZ worldwide eMagazine, 113(5), 30–35. doi: https://doi.org/10.1365/s38311-011-0053-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Fröhlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kleemann, S. et al. (2023). Introduction. In: Vietor, T. (eds) Life Cycle Design & Engineering of Lightweight Multi-Material Automotive Body Parts. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65273-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65273-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65272-5

  • Online ISBN: 978-3-662-65273-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics