Skip to main content

Physiological Roles of d-Serine in the Central Nervous System

  • Chapter
  • First Online:

Abstract

The N-methyl d-aspartic acid receptors (NMDARs) are key glutamate receptors that transduce glutamatergic signals throughout the developing and adult central nervous system (CNS). Despite diversity in their subunit composition, their subcellular localization, and their biophysical and pharmacological properties, activation of NMDARs always requires in addition to glutamate the binding of a co-agonist that has long been thought to be glycine. However, research over the last two decades has challenged this long-cherished model by showing that the d-isomer of serine is the preferential co-agonist for a large population of NMDARs in many areas of the adult brain. Nowadays, a totally new picture of glutamatergic synapses is emerging where both glycine and d-serine are involved in a complex interplay to regulate NMDAR functions in the CNS following time and space constraints. In this review, we focus on the particular contribution of d-serine relatively to glycine in orchestrating synapse formation, dynamics, and neuronal network activity in a time- and synapse-specific manner and its role in cognitive functions. We will discuss also how astroglia and neurons use different pathways to regulate levels of extracellular d-serine and how alterations in synaptic availability of this d-amino acid may contribute to cognitive deficits associated to healthy aging and therefore may open new avenues for therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aimone JB, Li Y, Lee SW et al (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almond SL, Fradley RL, Armstrong EJ et al (2006) Behavioral and biochemical characterization of a mutant mouse strain lacking d-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci 32:324–334

    Article  CAS  PubMed  Google Scholar 

  • Bado P, Madeira C, Vargas-Lopes C et al (2011) Effects of low-dose d-serine on recognition and working memory in mice. Psychopharmacology 218:461–470

    Article  CAS  PubMed  Google Scholar 

  • Balu DT, Basu AC, Corradi JP et al (2012) The NMDA receptor co-agonists, d-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiol Dis 45:671–682

    Article  CAS  PubMed  Google Scholar 

  • Balu DT, Li Y, Puhl MD et al (2013) Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci U S A 110:31

    Article  Google Scholar 

  • Balu DT, Takagi S, Puhl MD et al (2014) d-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol Neurobiol 34:419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu AC, Tsai GE, Ma CL et al (2009) Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Mol Psychiatry 14:719–727

    Article  CAS  PubMed  Google Scholar 

  • Benneyworth MA, Li Y, Basu AC et al (2012) Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol Neurobiol 32:613–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergersen LH, Morland C, Ormel L et al (2012) Immunogold detection of l-glutamate and d-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 22:1690–1697

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P, Gundersen V, Galbete JL et al (2004) Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7:613–620

    Article  CAS  PubMed  Google Scholar 

  • Campanini B, Spyrakis F, Peracchi A et al (2013) Serine racemase: a key player in neuron activity and in neuropathologies. Front Biosci 18:1112–1128

    Article  CAS  Google Scholar 

  • Changeux JP (2010) Allosteric receptors: from electric organ to cognition. Annu Rev Pharmacol Toxicol 50:1–38

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry FA, Boulland JL, Jenstad M et al (2008) Pharmacology of neurotransmitter transport into secretory vesicles. Handb Exp Pharmacol 184:77–106

    Article  CAS  PubMed  Google Scholar 

  • Chen PE, Geballe MT, Katz E et al (2008) Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J Physiol 586:227–245

    Article  CAS  PubMed  Google Scholar 

  • Corlew R, Brasier DJ, Feldman DE et al (2008) Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist 14:609–625

    Article  PubMed  PubMed Central  Google Scholar 

  • Curcio L, Podda MV, Leone L et al (2013) Reduced d-serine levels in the nucleus accumbens of cocaine-treated rats hinder the induction of NMDA receptor-dependent synaptic plasticity. Brain 136:1216–1230

    Article  PubMed  Google Scholar 

  • Danysz W, Fadda E, Wroblewski JT et al (1990) [3H]d-serine labels strychnine-insensitive glycine recognition sites of rat central nervous system. Life Sci 46:155–164

    Article  CAS  PubMed  Google Scholar 

  • DeVito LM, Balu DT, Kanter BR et al (2011) Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes Brain Behav 10:210–222

    Article  CAS  PubMed  Google Scholar 

  • Diniz LP, Almeida JC, Tortelli V et al (2012) Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of d-serine levels in cerebral cortex neurons. J Biol Chem 287:41432–41445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehmsen JT, Ma TM, Sason H et al (2013) d-serine in glia and neurons derives from 3-phosphoglycerate dehydrogenase. J Neurosci 33:12464–12469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fossat P, Turpin FR, Sacchi S et al (2012) Glial d-serine gates NMDA receptors at excitatory synapses in prefrontal cortex. Cereb Cortex 22:595–606

    Article  PubMed  Google Scholar 

  • Fuchs SA, Dorland L, de Sain-van der Velden MG et al (2006) d-serine in the developing human central nervous system. Ann Neurol 60:476–480

    Article  PubMed  Google Scholar 

  • Fuchs SA, Roeleveld MW, Klomp LW et al (2012) d-serine influences synaptogenesis in a p19 cell model. JIMD Rep 6:47–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukasawa Y, Segawa H, Kim JY et al (2000) Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral d- and l-amino acids. J Biol Chem 275:9690–9698

    Article  CAS  PubMed  Google Scholar 

  • Furukawa H, Gouaux E (2003) Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J 22:2873–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafson EC, Stevens ER, Wolosker H et al (2007) Endogenous d-serine contributes to NMDA-receptor-mediated light-evoked responses in the vertebrate retina. J Neurophysiol 98:122–130

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T et al (1993) Endogenous d-serine in rat brain: N-methyl-d-aspartate receptor-related distribution and aging. J Neurochem 60:783–786

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Oka T, Nishikawa T (1995) Extracellular concentration of endogenous free d-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66:635–643

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Kanda J, Oka T (2000) Effects of N-methyl-d-aspartate, kainate or veratridine on extracellular concentrations of free d-serine and l-glutamate in rat striatum: an in vivo microdialysis study. Brain Res Bull 53:347–351

    Article  CAS  PubMed  Google Scholar 

  • Haxaire C, Turpin FR, Potier B et al (2012) Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting d-serine-dependent NMDA receptor activation. Aging Cell 11:336–344

    Article  CAS  PubMed  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  CAS  PubMed  Google Scholar 

  • Helboe L, Egebjerg J, Moller M et al (2003) Distribution and pharmacology of alanine-serine-cysteine transporter 1 (asc-1) in rodent brain. Eur J Neurosci 18:2227–2238

    Article  PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH et al (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins SC, Heffernan ML, Saraswat LD et al (2013a) Structural, kinetic, and pharmacodynamic mechanisms of d-amino acid oxidase inhibition by small molecules. J Med Chem 56:3710–3724

    Article  CAS  PubMed  Google Scholar 

  • Hopkins SC, Campbell UC, Heffernan ML et al (2013b) Effects of d-amino acid oxidase inhibition on memory performance and long-term potentiation in vivo. Pharmacol Res Perspect 1:1

    Article  CAS  Google Scholar 

  • Huang X, Kong H, Tang M et al (2012) d-Serine regulates proliferation and neuronal differentiation of neural stem cells from postnatal mouse forebrain. CNS Neurosci Ther 18:4–13

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata S, Umino A, Umino M et al (2013) Modulation of extracellular d-serine content by calcium permeable AMPA receptors in rat medial prefrontal cortex as revealed by in vivo microdialysis. Int J Neuropsychopharmacol 16:1395–1406

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  CAS  PubMed  Google Scholar 

  • Kim PM, Aizawa H, Kim PS et al (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci U S A 102:2105–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241:835–837

    Article  CAS  PubMed  Google Scholar 

  • Konno R, Yasumura Y (1983) Mouse mutant deficient in d-amino acid oxidase activity. Genetics 103:277–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labrie V, Lipina T, Roder JC (2008) Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology (Berlin) 200:217–230

    Article  CAS  Google Scholar 

  • Labrie V, Wang W, Barger SW et al (2010) Genetic loss of d-amino acid oxidase activity reverses schizophrenia-like phenotypes in mice. Genes Brain Behav 9:11–25

    Article  CAS  PubMed  Google Scholar 

  • Larsen RS, Smith IT, Miriyala J et al (2014) Synapse-specific control of experience-dependent plasticity by presynaptic NMDA receptors. Neuron 83:879–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bail M, Martineau M, Sacchi S et al (2015) Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus. Proc Natl Acad Sci U S A 112:30

    Article  CAS  Google Scholar 

  • LeMaistre JL, Sanders SA, Stobart MJ et al (2012) Coactivation of NMDA receptors by glutamate and d-serine induces dilation of isolated middle cerebral arteries. J Cereb Blood Flow Metab 32:537–547

    Article  CAS  PubMed  Google Scholar 

  • Lench AM, Massey PV, Pollegioni L et al (2014) Astroglial d-serine is the endogenous co-agonist at the presynaptic NMDA receptor in rat entorhinal cortex. Neuropharmacology 83:118–127

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sacchi S, Pollegioni L et al (2013) Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nat Commun 4:1760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin H, Hsu FC, Baumann BH et al (2014) Cortical synaptic NMDA receptor deficits in alpha7 nicotinic acetylcholine receptor gene deletion models: implications for neuropsychiatric diseases. Neurobiol Dis 63:129–140

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Hidalgo M, Salgado-Puga K, Alvarado-Martinez R et al (2012) Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory. PLoS ONE 7:21

    Article  CAS  Google Scholar 

  • Ma TM, Abazyan S, Abazyan B et al (2013) Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via d-serine depletion. Mol Psychiatry 18:557–567

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M, Watanabe M, Yamaguchi S et al (2005) Spatial learning and long-term potentiation of mutant mice lacking d-amino-acid oxidase. Neurosci Res 53:34–38

    Article  CAS  PubMed  Google Scholar 

  • Martineau M, Baux G, Mothet JP (2006) d-serine signalling in the brain: friend and foe. Trends Neurosci 29:481–491

    Article  CAS  PubMed  Google Scholar 

  • Martineau M, Galli T, Baux G et al (2008) Confocal imaging and tracking of the exocytotic routes for d-serine-mediated gliotransmission. Glia 56:1271–1284

    Article  PubMed  Google Scholar 

  • Martineau M, Shi T, Puyal J et al (2013) Storage and uptake of d-serine into astrocytic synaptic-like vesicles specify gliotransmission. J Neurosci 33:3413–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martineau M, Parpura V, Mothet JP (2014) Cell-type specific mechanisms of d-serine uptake and release in the brain. Front 6:12. doi:10.3389/fnsyn.2014.00012

    Google Scholar 

  • Matsui T, Sekiguchi M, Hashimoto A et al (1995) Functional comparison of d-serine and glycine in rodents: the effect on cloned NMDA receptors and the extracellular concentration. J Neurochem 65:454–458

    Article  CAS  PubMed  Google Scholar 

  • Matsuo H, Kanai Y, Tokunaga M et al (2004) High affinity d- and l-serine transporter Asc-1: cloning and dendritic localization in the rat cerebral and cerebellar cortices. Neurosci Lett 358:123–126

    Article  CAS  PubMed  Google Scholar 

  • Maucler C, Pernot P, Vasylieva N et al (2013) In vivo d-serine hetero-exchange through alanine-serine-cysteine (ASC) transporters detected by microelectrode biosensors. ACS Chem Neurosci 4:772–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miya K, Inoue R, Takata Y et al (2008) Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol 510:641–654

    Article  CAS  PubMed  Google Scholar 

  • Monaghan DT, Olverman HJ, Nguyen L et al (1988) Two classes of N-methyl-d-aspartate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci U S A 85:9836–9840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montana V, Malarkey EB, Verderio C et al (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    Article  PubMed  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H et al (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci U S A 97:4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothet JP, Pollegioni L, Ouanounou G et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Natl Acad Sci U S A 102:5606–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothet JP, Rouaud E, Sinet PM et al (2006) A critical role for the glial-derived neuromodulator d-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5:267–274

    Article  CAS  PubMed  Google Scholar 

  • Mothet JP, Le Bail M, Billard JM (2015) Time and space profilling of NMDA receptor co-agonist functions. J Neurochem. doi:10.1111/jnc.13204

    PubMed  Google Scholar 

  • Ohide H, Miyoshi Y, Maruyama R et al (2011) d-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B Anal Technol Biomed Life Sci 879:3162–3168

    Article  CAS  Google Scholar 

  • Otte DM, Rasko T, Wang M et al (2014) Identification of the mitochondrial MSRB2 as a binding partner of LG72. Cell Mol Neurobiol 34:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP et al (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784

    Article  CAS  PubMed  Google Scholar 

  • Pankratov Y, Lalo U (2015) Role for astroglial alpha1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex. Front 9:230

    Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Ladepeche L, Ruel J et al (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    Article  CAS  PubMed  Google Scholar 

  • Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23

    Article  CAS  PubMed  Google Scholar 

  • Parpura V, Verkhratsky A (2013) Astroglial amino acid-based transmitter receptors. Amino Acids 44:1151–1158

    Article  CAS  PubMed  Google Scholar 

  • Petralia RS (2012) Distribution of extrasynaptic NMDA receptors on neurons. ScientificWorldJournal 2012:30

    Article  CAS  Google Scholar 

  • Popiolek M, Ross JF, Charych E et al (2011) d-amino acid oxidase activity is inhibited by an interaction with bassoon protein at the presynaptic active zone. J Biol Chem 286:28867–28875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priestley T, Kemp JA (1994) Kinetic study of the interactions between the glutamate and glycine recognition sites on the N-methyl-d-aspartic acid receptor complex. Mol Pharmacol 46:1191–1196

    CAS  PubMed  Google Scholar 

  • Pritchett D, Hasan S, Tam SK et al (2015) d-amino acid oxidase knockout (Dao(−/−)) mice show enhanced short-term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. Eur J Neurosci 41:1167–1179

    Article  PubMed  PubMed Central  Google Scholar 

  • Puyal J, Martineau M, Mothet JP et al (2006) Changes in d-serine levels and localization during postnatal development of the rat vestibular nuclei. J Comp Neurol 497:610–621

    Article  CAS  PubMed  Google Scholar 

  • Rasooli-Nejad S, Palygin O, Lalo U et al (2014) Cannabinoid receptors contribute to astroglial Ca(2)(+)-signalling and control of synaptic plasticity in the neocortex. Philos Trans R Soc Lond B Biol Sci 369:0077

    Article  CAS  Google Scholar 

  • Reyes-Haro D, Muller J, Boresch M et al (2010) Neuron-astrocyte interactions in the medial nucleus of the trapezoid body. J Gen Physiol 135:583–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro CS, Reis M, Panizzutti R et al (2002) Glial transport of the neuromodulator d-serine. Brain Res 929:202–209

    Article  CAS  PubMed  Google Scholar 

  • Rodenas-Ruano A, Chavez AE, Cossio MJ et al (2012) REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15:1382–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero GE, Lockridge AD, Morgans CW et al (2014) The postnatal development of d-serine in the retinas of two mouse strains, including a mutant mouse with a deficiency in d-amino acid oxidase and a serine racemase knockout mouse. ACS Chem Neurosci 5:848–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg D, Kartvelishvily E, Shleper M et al (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24:2951–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg D, Artoul S, Segal AC et al (2013) Neuronal d-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33:3533–3544

    Article  CAS  PubMed  Google Scholar 

  • Sacchi S, Cappelletti P, Giovannardi S et al (2008) Evidence for the interaction of d-amino acid oxidase with pLG72 in a glial cell line. Mol Cell Neurosci 48:20–28

    Article  CAS  Google Scholar 

  • Sacchi S, Cappelletti P, Giovannardi S et al (2011) Evidence for the interaction of d-amino acid oxidase with pLG72 in a glial cell line. Mol Cell Neurosci 48(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Sasabe J, Suzuki M, Imanishi N et al (2014) Activity of d-amino acid oxidase is widespread in the human central nervous system. Front Synaptic Neurosci 6:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki M, Konno R, Nishio M et al (1992) A single-base-pair substitution abolishes d-amino-acid oxidase activity in the mouse. Biochim Biophys Acta 1139:315–318

    Article  CAS  PubMed  Google Scholar 

  • Schell MJ (2004) The N-methyl d-aspartate receptor glycine site and d-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 359:943–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92:3948–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schell MJ, Brady RO Jr, Molliver ME et al (1997) d-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci 17:1604–1615

    CAS  PubMed  Google Scholar 

  • Scianni M, Antonilli L, Chece G et al (2013) Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity. J Neuroinflammation 10:1742–2094

    Article  CAS  Google Scholar 

  • Shigetomi E, Jackson-Weaver O, Huckstepp RT et al (2013) TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive d-serine release. J Neurosci 33:10143–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sjostrom PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39:641–654

    Article  PubMed  Google Scholar 

  • Smith SM, Uslaner JM, Yao L et al (2009) The behavioral and neurochemical effects of a novel d-amino acid oxidase inhibitor compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and d-serine. J Pharmacol Exp Ther 328:921–930

    Article  CAS  PubMed  Google Scholar 

  • Stehberg J, Moraga-Amaro R, Salazar C et al (2012) Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 26:3649–3657

    Article  CAS  PubMed  Google Scholar 

  • Stevens ER, Esguerra M, Kim PM et al (2003) d-serine and serine racemase are present in the vertebrate retina and contribute to the physiological activation of NMDA receptors. Proc Natl Acad Sci U S A 100:6789–6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens ER, Gustafson EC, Sullivan SJ et al (2010) Light-evoked NMDA receptor-mediated currents are reduced by blocking d-serine synthesis in the salamander retina. Neuroreport 21:239–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stobart JL, Lu L, Anderson HD et al (2013) Astrocyte-induced cortical vasodilation is mediated by d-serine and endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 110:3149–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strick CA, Li C, Scott L et al (2011) Modulation of NMDA receptor function by inhibition of d-amino acid oxidase in rodent brain. Neuropharmacology 61:1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Sullivan SJ, Miller RF (2012) AMPA receptor-dependent, light-evoked d-serine release acts on retinal ganglion cell NMDA receptors. J Neurophysiol 108:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan S, Gebara EG, Moullec K et al (2013) d-serine increases adult hippocampal neurogenesis. Front 7:155

    Google Scholar 

  • Suzuki M, Sasabe J, Miyoshi Y et al (2015) Glycolytic flux controls d-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proc Natl Acad Sci U S A 112:13

    Google Scholar 

  • Takata N, Mishima T, Hisatsune C et al (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165

    Article  CAS  PubMed  Google Scholar 

  • Traynelis SF, Wollmuth LP, McBain CJ et al (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turpin FR, Potier B, Dulong JR et al (2011) Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 32:1495–1504

    Article  CAS  PubMed  Google Scholar 

  • Verrall L, Walker M, Rawlings N et al (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26:1657–1669

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams SM, Diaz CM, Macnab LT et al (2006) Immunocytochemical analysis of d-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53:401–411

    Article  PubMed  Google Scholar 

  • Wolosker H (2011) Serine racemase and the serine shuttle between neurons and astrocytes. Biochim Biophys Acta 2011:1558–1566

    Article  CAS  Google Scholar 

  • Wolosker H, Mori H (2012) Serine racemase: an unconventional enzyme for an unconventional transmitter. Amino Acids 43:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc Natl Acad Sci U S A 96:13409–13414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yacubova E, Komuro H (2003) Cellular and molecular mechanisms of cerebellar granule cell migration. Cell Biochem Biophys 37:213–234

    Article  PubMed  Google Scholar 

  • Yamazaki D, Horiuchi J, Ueno K et al (2014) Glial dysfunction causes age-related memory impairment in Drosophila. Neuron 84:753–763

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Wada A, Yoshida K et al (2010) Brain-specific Phgdh deletion reveals a pivotal role for l-serine biosynthesis in controlling the level of d-serine, an N-methyl-d-aspartate receptor co-agonist, in adult brain. J Biol Chem 285:41380–41390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Higashimori H, Morel L (2013) Developmental maturation of astrocytes and pathogenesis of neurodevelopmental disorders. J Neurodev Disord 5:1866–1955

    Article  Google Scholar 

  • Zafra F, Gomeza J, Olivares L et al (1995) Regional distribution and developmental variation of the glycine transporters GLYT1 and GLYT2 in the rat CNS. Eur J Neurosci 7:1342–1352

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Gong N, Wang W et al (2008) Bell-shaped d-serine actions on hippocampal long-term depression and spatial memory retrieval. Cereb Cortex 18:2391–2401

    Article  PubMed  Google Scholar 

  • Zhang M, Ballard ME, Basso AM et al (2011) Behavioral characterization of a mutant mouse strain lacking d-amino acid oxidase activity. Behav Brain Res 217:81–87

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen K, Sloan SA et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Z, Yang B, Theus MH et al (2010) EphrinBs regulate d-serine synthesis and release in astrocytes. J Neurosci 30:16015–16024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorec R, Araque A, Carmignoto G et al (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4:2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our collaborators who help to expand the field. We apologize to our colleagues whose work could not be cited due to space limitations. Work in Dr Mothet’s lab is supported by operating grants from the Centre National de la Recherche Scientifique, France Alzheimer, the Fondation pour la Recherche Médicale, Direction Générale de l’Armement and the Université Aix-Marseille.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Mothet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Mothet, JP., Mondielli, G., Martineau, M. (2016). Physiological Roles of d-Serine in the Central Nervous System. In: Yoshimura, T., Nishikawa, T., Homma, H. (eds) D-Amino Acids. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56077-7_3

Download citation

Publish with us

Policies and ethics