Skip to main content

Arsenic and Fluoride Pollution in Water and Soils

  • Chapter
  • First Online:

Abstract

Water is an essential natural source for sustaining life and environment which we have always thought to be available in abundance and free gift of nature. Natural and anthropogenic pollutants threaten the quality of life through environmental pollution. Rainwater recharged from surface into the underground becomes groundwater. In many parts of the world, groundwater is pumped out of the ground so it can be used as a source of water for drinking, bathing, other household uses, agriculture, and industry. If rain water or surface water comes into contact with contaminated soil while seeping into the ground, it can become polluted and can carry the pollution from the soil to the groundwater.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abernathy CO, Calderon RL, Chappell WR (eds) (1997) Arsenic exposure and health effects. In: Proceedings of the third international conference on arsenic exposure and health effects. Elsevier, Amsterdam, pp 127–131

    Google Scholar 

  • Agusa T, Kunito T, Fujihara J, Kubota R, Minh TB, Trang PTK, Iwata H, Subramanian A, Viet PH, Tanabe S (2006) Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi, Vietnam. Environ Pollut 139:95–106

    Article  CAS  Google Scholar 

  • An D, He YG, Hu OX (1997) Poisoning by coal smoke containing arsenic and fluoride. Fluoride 30:29–32

    CAS  Google Scholar 

  • Appleyard SJ, Angeloni J, Watkins R (2006) Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia. Appl Geochem 21:83–97

    Article  CAS  Google Scholar 

  • Ball AL, Rom WN, Glenne B (1983) Arsenic distribution in soils surrounding the Utah copper smelter. Am Ind Hyg Assoc J 44:341–348

    Article  CAS  Google Scholar 

  • Banks D, Frengstad B, Midtġard A, Jan Reidar Krog, Strand T (1998) The chemistry of Norwegian groundwaters: I. The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters. Sci Total Environ 222:71–91

    Google Scholar 

  • Barringer JL, Szabo Z, Barringer TH (1998) Arsenic and metals in soils in the vicinity of the Imperial Oil Company Superfund site, Marlboro Township, Monmouth County, New Jersey. U.S. Geol Surv Water-Resour Invest Rep 98-4016

    Google Scholar 

  • Barringer JL, Reilly PA, Eberl DD, Blum AE, Bonin JL, Rosman R, Hirst B, Alebus M, Cenno K, Gorska M (2011) Arsenic in sediments, groundwater, and streamwater of a glauconitic coastal plain terrain, New Jersey, USA—Chemical “fingerprints” for geogenic and anthropogenic sources. Appl Geochem 26:763–776

    Article  CAS  Google Scholar 

  • Beaulieu BT, Savage KS (2005) Arsenate adsorption structures on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils. Environ Sci Technol 39:3571–3579

    Article  CAS  Google Scholar 

  • Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626

    Article  CAS  Google Scholar 

  • Bhattacharya P, Jacks G, Ahmed KM, Khan AA, Routh J (2002) Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bull Enviro Cont Tox 69:528–545

    Google Scholar 

  • Boyle DR (1976) The geochemistry of fluorine and its application in mineral exploration. PhD thesis. University of London, Imperial College Science and Technology

    Google Scholar 

  • Boyle DR (1992) Effects of base exchange softening on fluoride uptake in groundwaters of the Moncton Sub-Basin, New Brunkswick, Canada. In: Kharaka YK, Maest AS (eds) Waterrock interaction. Proceedings of 7th International Symposium Water-rock interaction. pp 771–774

    Google Scholar 

  • Brahman KD, Kazi TG, Afridi HI, Naseem S, Arain SS, Wadhwa SK, Shah F (2013) Simultaneously evaluate the toxic levels of fluoride and arsenic species in underground water of Tharparkar and possible contaminant sources: a multivariate study. Ecotoxicol Environ Safety 89(95–107):234

    Google Scholar 

  • Brooks WE (2008) Arsenic. 2007 Minerals Yearbook, U.S. Geological Survey

    Google Scholar 

  • Brown CJ, Chute SK (2002) Arsenic in bedrock wells in Connecticut. (Abstract). In: Arsenic in New England: a multidisciplinary scientific conference, National Institute of Environmental Health Sciences, Superfund Basic Research Program, Manchester, New Hampshire, 29–31 May 2002

    Google Scholar 

  • Brunt R, Vasak L, Griffioen J (2004) Arsenic in groundwater: Probability of occurrence of excessive concentration on a global scale. Int Groundwater Res Assess Centre: Report nr. SP 2004-1

    Google Scholar 

  • Camm G, Glass HJ, Bryce DW, Butcher AR (2004) Characterization of a mining-related arsenic-contaminated site, Cornwall, UK. J Geochem Explor 82:1–15

    Article  CAS  Google Scholar 

  • CDCP (Centers for Disease Control and Prevention) (1999) Achievements in public health, 1900–1999: fluoridation of drinking water to prevent dental caries. Morbidity and mortality weekly Report 48:933–940

    Google Scholar 

  • Chae GT, Yun ST, Mayer B, Kim KH, Kim SY, Kwon JS, Kim K, Koh YK (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385:272–283

    Article  CAS  Google Scholar 

  • Chanpiwat P, Sthiannopkao S, Cho KH, Kim K-W, San V, Suvathong B, Vongthavady C (2011) Contamination by arsenic and other trace elements of tube- well waters along the Mekong River in Lao PDR. Environ Pollut 159:567–576

    Article  CAS  Google Scholar 

  • Chen CJ, Chuang YC, Lin TM, Wu HY (1985) Malignant neoplasms among residents of a Blackfoot disease-endemic area in Taiwan: high-arsenic well water and cancers. Cancer Res 45:5895–5899

    Google Scholar 

  • Chen CJ, Kuo TL, Wu MM (1988) Arsenic and cancers [Letter]. Lancet 331:414–415

    Google Scholar 

  • Cohn, Perry D (1992) An epidemiological report on drinking water fluoridation and osteosarcoma in young males New Jersey department of health, environmental health service, PhD Trenton NJ 8 Nov 1992

    Google Scholar 

  • Cronin SJ, Manoharan V, Hedley MJ, Loganathan P (2000) Fluoride: a review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand. N. Z. J Agr Res 43:295–321

    Article  CAS  Google Scholar 

  • Dangic A (2007) Arsenic in surface- and groundwater in central parts of the Balkan Peninsula (SE Europe) (Chap. 5). In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Trace metals and other contaminants in the environment, vol 9. Elsevier BV, Amsterdam, pp 127–156

    Google Scholar 

  • Datta PS, Deb DL, Tyagi SK (1996) Stable isotope (180) investigations on the processes controlling fluoride contamination of groundwater. J Contam Hydrol 24:85–96

    Article  CAS  Google Scholar 

  • Davraz A, Sener E, Sener S (2008) Temporal variations of fluoride concentration in Isparta public water system and health impact assessment (SW-Turkey). Environ Geol 56:159–170

    Article  CAS  Google Scholar 

  • Debackere M, Delbeke FT (1978) Fluoride pollution caused by a brick work in the Flemish countryside of Belgium. Int J Environ Stud 11:245–252

    Article  CAS  Google Scholar 

  • Desbarats AJ (2009) On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba. Appl Geochem 24:915–927

    Article  CAS  Google Scholar 

  • Dissanayake CB (1991) The fluoride problem in the ground water of Sri Lanka—environmental management and health. Int J Environ Stud 38(2):137–155

    Article  CAS  Google Scholar 

  • Durant JL, Ivushkina T, MacLaughlin K, Lukacs H, Gawel J, Senn D, Hemond HF (2004) Elevated levels of arsenic in the sediments of an urban pond: sources, distribution and water quality impacts. Water Res 38:2989–3000

    Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York 393 pp

    Google Scholar 

  • Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC Press, Boca Raton

    Google Scholar 

  • Farooqi A, Masuda H, Kusakabe M, Naseem M, Firdous N (2007) Distribution of highly arsenic and fluoride contaminated groundwater from east Punjab, Pakistan, and the controlling role of anthropogenic pollutants in the natural hydrological cycle. Geochem J 41:213–234

    Article  CAS  Google Scholar 

  • Fawell J, Bailey K, Chilton J, Dahi E, Fewtrell L, Magara Y (2006) Fluoride in drinking water. WHO, IWA publishing, London, pp 1–144

    Google Scholar 

  • Food and agriculture organization of the United Nations (2006) Fertilizer use by crop in Pakistan, First version, published by FAO, Rome

    Google Scholar 

  • Foster MD (1950) The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains. Geo Cosm Acta 1:32–48

    Google Scholar 

  • Gaciri SJ, Davies TC (1993) The occurrence and geochemistry of fluoride in some natural waters of Kenya. J Hydrol 143:395–412

    Article  CAS  Google Scholar 

  • Gillespie RJ, Humphries DA, Baird NC, Robinson EA (1989) Chemistry, 2nd edn. Allyn and Bacon, Boston

    Google Scholar 

  • Gómez JJ, Lillo J, Sahún B (2006) Naturally occurring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environ Geol 50:1151–1170

    Article  Google Scholar 

  • Greenwood NN, Earnshaw A (1984) Chemistry of the Elements. Pergamon Press, Toronto

    Google Scholar 

  • Gritsan NP, Miller GW, Schumatkov GG (1995) Correlation among heavy metals and fluoride in soils, air and plants in relation to environmental damage. Fluoride 28:180–188

    CAS  Google Scholar 

  • Gunduz O, Simsek C, Hasozbek A (2010) Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water Air Soil Pollut 205:43–62

    Article  CAS  Google Scholar 

  • Guo H, Zhang B, Li Y, Berner Z, Tang X, Norra S, Stüben D (2011) Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environ Pollut 159(4):876–883

    Google Scholar 

  • Heinrichs G, Udluft P (1999) Natural arsenic in Triassic rocks: a source of drinking-water contamination in Bavaria, Germany. Hydrogeol J 7, 468–476

    Google Scholar 

  • Hemond HF (1995) Movement and distribution of arsenic in the Aberjona watershed. Environ Health Perspect, Suppl 1(103):35–40

    Article  Google Scholar 

  • Hileman B (2007) Arsenic in chicken production. Chem Eng News 85:34–35

    Article  Google Scholar 

  • Hoang TH, Bang S, Kim K-W, Nguyen MH, Dang DM (2010) Arsenic in groundwater and sediment in the Mekong River delta, Vietnam. Environ Pollut 158:2648–2658

    Article  CAS  Google Scholar 

  • Hurtado R, Gardea T (2004) Environmental evaluation of fluoride in drinking water at “Los altos de Jalisco”, in the central Mexico region. J Toxicol Environ Health A 67:1741–1753

    Google Scholar 

  • Israel GW (1974) Evaluation and comparison of three atmospheric fluoride monitors under field conditions. Atmo Env 8:159–166

    Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soil and plants, 3rd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  • Kahn BI, Solo-Gabriele HM, Townsend TG, Cai Y (2006) Release of arsenic to the environment from CCA-treated wood: 1. Leaching and speciation during service. Environ Sci Technol 40:988–993

    Article  Google Scholar 

  • Karczewska A, Bogda A, Kryasiak A (2007) Arsenic in soils in areas of former mining and mineral processing in Lower Silesia, southwestern Poland (Chap. 16). In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Trace metals and other contaminants in the environment, vol 9. Elsevier BV, Amsterdam, pp 411–440

    Google Scholar 

  • Karthikeyan K, Nanthakumar K, Velmurugan P, Tamilarasi S, Lakshmanaperumalsamy P (2010) Prevalence of certain inorganic constituents in groundwater samples of Erode district, Tamilnadu, India, with special emphasis on fluoride, fluorosis and its remedial measures. Environ Monit Assess 160:141–155

    Article  CAS  Google Scholar 

  • Keshavarzi B, Moore F, Esmaeili A, Rastmanesh F (2010) The source of fluoride toxicity in Muteh area, Isfahan, Iran. Environ Earth Sci 61:777–786. doi:10.1007/s12665-009-0390-0

    Article  CAS  Google Scholar 

  • Kim K, Jeong GY (2005) Factors influencing natural occurrence of fluoride rich ground waters: a case study in the southeastern part of the Korean Peninsula. Chemosphere 58(10):1399–1408

    Article  CAS  Google Scholar 

  • Kim Y, Kim JY, Kim K (2010) Geochemical characteristics of fluoride in groundwater of Gimcheon, Korea: lithogenic and agricultural origins. Environ Earth Sci. doi:10.1007/s12665-010-0789-7

  • Kinniburgh DG, Newell AJ, Davies J, Smedley PL, Milodowski AE, Ingram JA, Merrin PD (2006) The arsenic concentrations on groundwater from the Abbey Arms Wood observation borehole, Delamere, Cheshire, UK. In: Barker RD, Tellam JH (eds) Fluid flow and solute movement in sandstone: the onshore UK Permo-Triassic redbed sequence, vol 263. Geological Society of London, Special Publication, London, pp 265–284

    Google Scholar 

  • Kolker A, Palmer CA, Bragg LJ, Bunnell JE (2006) Arsenic in coal. U.S. Geol Surv Fact Sheet FS 2005-3152

    Google Scholar 

  • Koritnig S (1978) Fluorine. In: Wedepohl KH (ed) Handbook of Geochemistry, vol II/1. Springler, Berlin, 9C1-B9O3

    Google Scholar 

  • Krainov SR, Rubeikan VZ, Kapranov SD, Petrova NG (1969) Highly alkaline (pH 12) fluosilicate waters in the deeper zones of the Lovozero Massif. Geochem Int 6:635–640

    Google Scholar 

  • Krauskopf KB, Bird DK (1995) An introduction to geochemistry. McGraw-Hill Int, Singapore 647

    Google Scholar 

  • Krüger T, Holländer HM, Boochs P-W, Billib M, Stummeyer J, Harazim B (2007) In situ remediation of arsenic at a highly contaminated site in Northern Germany. In: GQ07 Securing groundwater quality in urban and industrial environments, Proceedings of 6th international groundwater quality conference, Freemantle, Western Australia, 2–7 Dec 2007

    Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lepkowski KW (1998) Arsenic crisis in Bangladesh. Chem Eng News 76:27–30

    Article  Google Scholar 

  • Li X, Hou X, Zhou Z, Liu L (2009) Distribution and geochemical evolution of fluoride in groundwater of Taiyuan Basin, China. In: ICEET ’09 proceedings of the 2009 international conference on energy and environment technology, vol 2, pp 507–510, doi:10.1109/ICEET.2009.361

  • Looie SB, Moore F (2010) A study of fluoride groundwater occurrence in Posht-e-Koohe-Dashtestan, South of Iran. World Appl Sci J 8(11):1317–1321

    Google Scholar 

  • Lopez DL, Bundschuh J, Birkle P, Armienta MA, Cumbal L, Sracek O, Cornejo L, Ormachea M (2012) Arsenic in volcanic geothermal fluids of Latin America. Sci Total Environ 429:57–75

    Google Scholar 

  • Luu TTG, Sthiannopkao S, Kim K-W (2009) Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents of the Kandal Province of Cambodia. Environ Int 35:455–460

    Article  CAS  Google Scholar 

  • Ma HZ, Xia YJ, Wu KG, Sun TZ, Mumford JL (1999) Human exposure to arsenic and health effects in Bayingnormen, Inner Mongolia. In: Chappell WR, CO

    Google Scholar 

  • Manning BA, Goldberg S (1996) Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J 60:121–131

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S (1997) Adsorption and stability of arsenic(III) at the clay mineral-water interface. Environ Sci Technol 31:2005–2011

    Article  CAS  Google Scholar 

  • Martin AJ, Pedersen TF (2002) The seasonal and interannual mobility of arsenic in a mine-impacted lake. Environ Sci Technol 36:1516–1523

    Article  CAS  Google Scholar 

  • Masscheleyn PH, Dlaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1418

    Article  CAS  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere—a review. Sci Total Environ 249:297–312

    Article  CAS  Google Scholar 

  • Maurer (1990) Fluoride an equivocal carcinogen. J Nat Cancer Ins 82:1118–1126

    Article  CAS  Google Scholar 

  • McCarthy KT, Pichler T, Price RE (2005) Geochemistry of Champagne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Less Antilles. Chem Geol 224:55–68

    Article  CAS  Google Scholar 

  • McClintock TR, Chen Y, Bundschuh J, Oliver JT, Navoni J, Olmos V, Lepori EV, Ahsan H, Parvez F (2012) Arsenic exposure in Latin America: biomarkers, risk assessments and related health effects. Sci Total Environ 429:76–91

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) Review: the behavior and environmental impact of contaminants in fertilizers. Aus J Soil Res 34:1–54

    Article  CAS  Google Scholar 

  • Messaïtfa A (2008) Fluoride contents in groundwaters and the main consumed foods (dates and tea) in Southern Algeria region. From the issue entitled “Special issue: groundwater flow—selected papers from XXXIII IAH Congress, Zacatecas, Mexico (233–320)”. Environ Geol 55(2), 377–383

    Google Scholar 

  • Mirlean N, Roisenberg A (2007) Fluoride distribution in the environment along the gradient of a phosphate-fertiliser production emission (southern Brazil). Environ Geochem Health 29(3):179–187

    Article  CAS  Google Scholar 

  • Moghaddam AA, Fijani E (2008) Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ Geol 56:281–287

    Article  Google Scholar 

  • Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20:639–659

    Article  CAS  Google Scholar 

  • Mondal NC, Prasad RK, Saxena VK, Singh Y, Singh VS (2009) Appraisal of highly fluoride zones in groundwater of Kurmapalli watershed, Nalgonda district, Andhra Pradesh (India). Environ Earth Sci 59:63–73

    Google Scholar 

  • Motalane MP, Strydom CA (2004) Potential groundwater contamination by fluoride from two South African phosphogypsums. Water SA 30(4):465–468

    Article  CAS  Google Scholar 

  • Msonda KWM, Masamba WRL, Fabiano E (2007) A study of fluoride groundwater occurrence in Nathenje, Lilongwe, Malawi. Phys Chem Earth Parts A/B/C 32(15–18):1178–1184

    Article  Google Scholar 

  • Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Populat Nutr 24:142–163

    Google Scholar 

  • Naseem S, Rafique T, Bashir E, Bhanger MI, Laghari A, Usmani TH (2010) Lithological influences on occurrence of high-fluoride groundwater in Nagar Parkar area, Thar Desert, Pakistan. Chemosphere 78:1313–1321

    Article  CAS  Google Scholar 

  • National Research Council (1993) Health effects of ingested fluoride. National Academy Press, Washington, DC

    Google Scholar 

  • Nickson RT, McArthur JM, Sherestha B, Kyaw-Myint TO, Lowry D (2005) Arsenic and other drinking water quality issues, Muzaffargarh district, Pakistan. Appl Geochem 20:55–68

    Google Scholar 

  • Nicolli HB, Bundschuh J, Blanco Maria del C, Tujchneider OC, Panarello HO, Dapeña C, Rusnasky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56

    Google Scholar 

  • Noguchi K, Nakagawa R (1969) Arsenic and arsenic-lead sulfides in sediments from Tamagawa hot springs, Akita Prefecture. Proc Japan Acad 45:45–50

    Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  Google Scholar 

  • Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (2007) Arsenic in soil and groundwater: an overview (Chap. 1). In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Trace metals and other contaminants in the environment, vol 9. Elsevier BV, Amsterdam, pp 3–60

    Google Scholar 

  • Oruc N (2003) Problems of high fluoride waters in Turkey (hydrogeology and health aspects). The short course on medical geology-health and environment, Canberra

    Google Scholar 

  • Oruc N (2008) Occurrence and problems of high fluoride waters in Turkey: an overview. From the issue entitled “Medical Geology in Developing Countries, Part 2”. Environ Geochem Health 30(4):315–323

    Article  CAS  Google Scholar 

  • Palumbo-Roe B, Klinck B, Cave M (2007) Arsenic speciation and mobility in mine wastes from a copper-arsenic mine in Devon, UK: a SEM, XAS, sequential chemical extraction study (Chap. 17). In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Trace metals and other contaminants in the environment, vol 9. Elsevier BV, Amsterdam, pp 441–471

    Google Scholar 

  • Patel KS, Shrivas K, Brandt R, Jakubowski N, Corns W, Hoffmann P (2005) Arsenic contamination in water, soil, sediments and rice of India. Environ Geochem Health 27:131–145

    Article  CAS  Google Scholar 

  • Pershagen G (1985) Lung cancer mortality among men living near an arsenic-emitting smelter. Am J Epidemiol 122:684–694

    CAS  Google Scholar 

  • Peters SC (2008) Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes. J Contam Hydrol 99:8–21

    Article  CAS  Google Scholar 

  • Peters SC, Blum JD, Klaue B, Karagas MR (1999) Arsenic occurrence in New Hampshire drinking water. Environ Sci Technol 33:1328–1333

    Google Scholar 

  • Pickering WF (1985) The mobility of soluble fluoride in soils. Environ Pollut 9:281–308

    Article  CAS  Google Scholar 

  • Polomiski J, Fluhler H, Blaser P (1982) Accumulation of air born fluoride in soils. J Environ Qual 11:457–461

    Google Scholar 

  • Ramamohana Rao NV, Suryaprakasa Rao K, Schuiling RD (1993) Fluorine distribution in waters of Nalgonda District, Andhra Pradesh, India. Environ Geol, 21:84–89

    Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley, London, 588 pp

    Google Scholar 

  • Reddy AGS, Reddy DV, Rao PN, Prasad KM (2010a) Hydrogeochemical characterization of fluoride rich groundwater of Wailapalli watershed, Nalgonda district, Andhra Pradesh, India. Environ Monit Assess 171:561–577

    Article  CAS  Google Scholar 

  • Reddy DV, Nagabhushanam P, Sukhija BS, Reddy AGS, Smedley PL (2010b) Fluoride dynamics in the granitic aquifer of the Wailapally watershed, Nalgonda District, India. Chem Geol 269(3–4):278–289

    Article  CAS  Google Scholar 

  • Rice KC, Conko KM, Hornberger GM (2002) Anthropogenic sources of arsenic and copper to sediments in a suburban lake, northern Virginia. Environ Sci Technol 36:4962–4967

    Article  CAS  Google Scholar 

  • Rimsaite J (1970) Structural formulae of oxidized and hydroxyl-deficient micas and decomposition of the hydroxyl group. Contrib Mineral Petrol 25:225–240

    Article  CAS  Google Scholar 

  • Robert B, Robert William O, Vincent C, Calin AT, Belkin HE, Zheng B, Harry EL, Susan VM, Anne LB (2002) Health impacts of coal and coal use: possible solutions. Coal Geology 50:425–443

    Google Scholar 

  • Robertson FN (1989) Arsenic in groundwater under oxidizing conditions, south-west United States. Environ Geochem Health 11:1247–1253

    Article  Google Scholar 

  • Roth F (1957) The sequelae of chronic arsenic poising in Moselle vintners. J Med Monthly 2:172–175

    Google Scholar 

  • Rowland HAL, Polya DA, Lloyd JR, Pancost RD (2006) Characterization of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Organic Chem 37:1101–1114

    CAS  Google Scholar 

  • Ryan PC, Kim J, Wall AJ, Moen JC, Corenthal LG, Chow DR, Sullivan CM, Bright KS (2011) Ultramafic-derived arsenic in a fractured rock aquifer. Appl Geochem 26:444–457

    Article  CAS  Google Scholar 

  • Senior LA, Sloto RA (2006) Arsenic, boron, and fluoride concentrations in ground water in and near diabase intrusions, Newark Basin, Southeastern Pennsylvania. U.S. Geological survey scientific investigations report 2006-5261

    Google Scholar 

  • Sexena VK, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43:731–736

    Google Scholar 

  • Smedley PL (2008) Sources and distribution of arsenic in groundwater and aquifers (Chap. 4). In: Appelo CAJ (ed) Arsenic in groundwater: a world problem. Proceedings of the IAH Seminar, Utrecht, Netherlands, Nov 2006. NERC Open Research Archive. Available from http://nova.nerc.ac.uk, Accessed 7/6/12

  • Smedley PL, Kinniburgh DG (2002) A Review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley PL, Zhan M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18(9):1453–1477

    Google Scholar 

  • Smith S, Nidu R, Alston AM (1998) Arsenic in the soil environment: a review. In: Sparks DL (ed) Advances in agronomy, vol 64. Academic Press, San Diego, pp 149–195

    Google Scholar 

  • Srinivasa Rao N (1997) The occurrence and behaviour of fluoride in the groundwater of the Lower Vamsadhara River basin, India. Hydrolog Sci 42(6):877–892

    Google Scholar 

  • Sultana J, Farooqi A, Ali U (2014) Arsenic concentration variability, health risk assessment, and source identification using multivariate analysis in selected villages of public water system, Lahore, Pakistan. Environ Mon Assess, 1–11

    Google Scholar 

  • Tebutt THY (1983) Relationship between natural water quality and health. United Nations Educational, Scientific and Cultural Organization, Paris

    Google Scholar 

  • Tekle-Haimanot R, Melaku Z, Kloos H, Reimann C, Fantaye W, Zerihun L, Bjorvatn K (2006) The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ 367:182–190

    Article  CAS  Google Scholar 

  • Tian DF, Ma H, Feng Z, Xia Y, Le XC, Ni Z, Allen J, Collins B, Schreinemachers D, Mumford JL (2001) Analyses of micronuclei in exfoliated epithelial cells from individuals chronically exposed to arsenic via drinking water in Inner Mongolia, China. J Tox Environ Health Part A 64:473–484

    Google Scholar 

  • Tripathy S, Panigrahil MK, Kundu N (2005) Geochemistry of soil around a fluoride contaminated area in Nayagarh District, Orissa, India: Factor analytical appraisal. Environ Geochem Health 27:205–216

    Article  CAS  Google Scholar 

  • Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Nat Cancer Inst 40:453–463

    CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (2001) 40 CFR Parts 9, 141, and 142, National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring. Final rule. Fed Reg 66(14):6975–7066

    Google Scholar 

  • USEPA (2011) Five-Year Review Report, Vineland Chemical Company Superfund Site, Vineland Township, Cumberland County, New Jersey. U.S. Environmental Protection Agency, Region 2, New York

    Google Scholar 

  • Valenzuela-Vásquez L, Ramírez-Hernández J, Reyes-Lpez J, Sol-Uribe A, Lázaro- Mancilla O (2006) The origin of fluoride in groundwater supply to Hermosillo City, Sonora, Mexico. Environ Geol 51:17–27

    Article  Google Scholar 

  • van Geen A, Zheng Y, Versteeg R, Stute M, Horneman A, Dhar R, Steckler M, Gelman A, Small C, Ahsan H, Graziano JH, Hussain I, Ahmed KM (2003) Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resour Res 39:1–16 (HWC 3)

    Google Scholar 

  • Varsanyi I, Fodre Z, Bartha A (1991) Arsenic in drinking water and mortality in the southern Great Plain, Hungary. Environ Geochem Health 13:14–22

    Article  CAS  Google Scholar 

  • Vivona R, Preziosi E, Madé B, Giuliano G (2007) Occurrence of minor toxic elements in volcanic-sedimentary aquifers: a case study in central Italy. Hydrogeol J 15:1183–1196

    Article  CAS  Google Scholar 

  • Voroshelov YI (1966) Geochemical behavior of fluorine in the groundwaters of the Moscow region. Geochem Int 2:261–269

    Google Scholar 

  • Walsh LM, Keeney DR (1975) Behavior and phytotoxicity of inorganic arsenicals in soils (Chap. 3). In: Woolson EA (ed) Arsenical Pesticides. ACS Symposium series 7, American Chemical Society, Washington, DC, pp 35–52

    Google Scholar 

  • Wang XC, Kawahara K, Guo XJ (1999) Fluoride contamination of groundwater and its impacts on human health in Inner Mongoloa area. J Water SRT—Aqua 48:146–153

    CAS  Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366:701–721

    Google Scholar 

  • Wedepohl KH (ed) (1969) Handbook of geochemistry. Vol II-l. Springer, Berlin

    Google Scholar 

  • Wedepohl KH (1978) Handbook of geochemistry. Springer Verlag, Berlin

    Google Scholar 

  • Weinstein LH, Davison A (2003) Fluoride in the environment. CABI Publishing

    Google Scholar 

  • Welch AH, Stollenwerk KG (eds) (2003) Arsenic in Groundwater. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Welch AH, Lico MS, Hughes JL (1988) Arsenic in groundwater of the western United States. Ground Water 26:333–347

    Article  CAS  Google Scholar 

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in groundwater of the United States: occurrence and geochemistry. Ground Water 38:589–604

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1993) Guideline values for arsenic. WHO technical report series 776

    Google Scholar 

  • WHO (World Health Organization) (1994) Fluorides and oral health. WHO technical report series 846

    Google Scholar 

  • World Development Report (2004) Making services work for poor people. World Bank. © World Bank.https://openknowledge.worldbank.org/handle/10986/5986. License: CC BY 3.0 IGO

  • Woolson EA (1977) Fate of arsenicals in different environmental substrates. Environ Health Perspect 19:73–81

    Article  CAS  Google Scholar 

  • Ya Yudovich E, Ketris MP (2005) Arsenic in coal: a review. Int J Coal Geol 61:141–196

    Article  CAS  Google Scholar 

  • Yidana SM, Yakubo BB, Akabzaa TM (2010) Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. J Afr Earth Sci 58:220–234

    Article  CAS  Google Scholar 

  • Young SM, Pitawala A, Ishiga H (2010a) Factors controlling fluoride contents of groundwater in north-central and northwestern Sri Lanka. Environ Earth Sci. doi:10.1007/s12665-010-0804-z

    Google Scholar 

  • Young SM, Pitawala A, Ishiga H (2010b) Factors controlling fluoride contents of groundwater in north-central and northwestern Sri Lanka. Environ Earth Sci. doi:10.1007/s12665-010-0804-z

    Google Scholar 

  • Zheng B, Yu X, Zhand J, Zhou D (1996) Environmental geochemistry of coal and arsenic in southwest Guizou, P.R. China. 30th International Geological Congress, vol 3, pp 4–14, Beijing

    Google Scholar 

  • Zheng L, Luo H, Bandou K, Kanai F, Terasaki K, Yoshimura T, Sakai Y, Kimura S, Hagiwara H (2006) High fluoride groundwater with high salinity and fluorite in aquifer sediments in Inner Mongolia China. Chin J Geochem 25(1):103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abida Farooqi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Farooqi, A. (2015). Arsenic and Fluoride Pollution in Water and Soils. In: Arsenic and Fluoride Contamination. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2298-9_1

Download citation

Publish with us

Policies and ethics