Skip to main content

Ion Exchange to Fabrication of Waveguides for Optical Telecommunication

  • Chapter
  • First Online:
Book cover Ion Exchange Technology I

Abstract

Ion exchange technique in the process of design and fabrication of passive devices for telecommunication has been a procedure to increment the glass refraction index and has received special attention because it improves surface-mechanical properties of glass and, more importantly, creates a wave-guiding region in the glass. Today, glass waveguides are considered to be suitable candidates for passive and active device for the integrated optical (IO) such as couplers, multiplexers, demultiplexers, and others. Their importance is borne out by their compatibility with optical fibers, low cost, low propagation loss, and integration into the system. In this way, with increasing speed of data transmission, the importance of integrated photonic devices and circuits grows. Many research groups have focused in the development of optical amplifier based on Erbium-doped materials since their potential to realize broadband and inherently linear compatible with current technology. This chapter gives an introduction to the ion exchange technique in solid matter, mainly optical glasses. I shall present the main results and equations describing the traditional ion exchange processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The multicomponent optical glasses used for ion exchange are usually silicate glasses composed of SiO2 and various other oxides. The oxides of monovalent cations such as Na2O, K2O, Li2O, etc., are called the network modifiers, and it is believed that the basic structure of the glass does not change as a result of the binary ion exchange where one of the network modifiers is exchanged with an ion of higher polarizability.

  2. 2.

    The wave propagation along the waveguide axis is described by the wave equation, where the wavelength depends on the waveguide structure as well as on the frequency. Along the width of the waveguide, the wave is confined in a standing wave pattern. The equation that describes the transverse wave form is more complicated and is derived in the case of electromagnetic waves from Maxwell’s, along with boundary conditions that depend on the shape of the waveguide and the materials from which it is made. These equations have multiple solutions, called propagation modes (TE, transversal electric, and TM, transversal magnetic).

  3. 3.

    ERFC is the complementary error function, commonly denoted erfc(z), and is an entire function defined by \( erfc(z) = \tfrac{2}{{\sqrt {\pi } }}\int\limits_z^{\infty } {{{e}^{{ - {{t}^2}}}}dt} \).

  4. 4.

    A single-mode waveguide is a waveguide designed to carry only a single ray of light (mode). This ray of light often contains a variety of different wavelengths. Although the ray travels parallel to the length of the fiber, it is often called the transverse mode since its electromagnetic vibrations occur perpendicular (transverse) to the length of the fiber.

References

  1. Izawa T, Nakagone H (1972) Optical waveguide formed by electrically induced migration of ions in glass plates. Appl Phys Lett 21:584–586

    Article  CAS  Google Scholar 

  2. Giallorenzi TG, West EJ, Kirk R, Ginther R, Andreews RA (1973) Optical waveguides formed by thermal migration of ions in glass. Appl Opt 12:1240–1245

    Article  CAS  Google Scholar 

  3. Neuman V, Parriaux O, Walpita LM (1979) Double alkali effect: influence on index profile of ion-exchanged waveguides. Electron Lett 15:704–706

    Article  CAS  Google Scholar 

  4. Ramaswamy RV, Srivastava R, Chludzinski P (1988) Influence of Ag+-Na+ ion-exchange equilibrium on waveguide index profiles. IEEE J Quatum Elect 24:780–786

    Article  CAS  Google Scholar 

  5. Jose G, Sorbello G, Taccheo S, Cianci E, Foglieti V, Laporta P (2003) Active waveguide devices by Ag-Na ion exchange on erbium-ytterbium doped phosphate glasses. J Non-Cryst Solids 322:256–261

    Article  CAS  Google Scholar 

  6. Ramaswany RV, Srisvatava R, Chludzinski P, Anderson TJ (1988) Influence of Ag+-Na+ ion-exchange on waveguide index profile. IEEE J Quantum Elect 24:780–786

    Article  Google Scholar 

  7. Garfinkel HM (1968) Ion-exchange equilibriums between glass and molten salts. J Phys Chem 72:4175–4181

    Article  CAS  Google Scholar 

  8. Gato L, Srivastava R (1996) Time-dependent surface-index change in ion-exchanged waveguides. Opt Comm 123:483–486

    Article  CAS  Google Scholar 

  9. Francini R, Giovenal R, Grassano UM, Laporta P, Taccheo S (2000) Spectroscopy of Er of Er-Yb-doped phosphate glasses. Opt Mater 13:417–425

    Article  CAS  Google Scholar 

  10. Quaranta A, Gonella F (1995) On the role of local electric field correlation effects on the ionic interdiffusion in soda-lime glass. J Non-Cryst Solids 192:334–337

    Article  Google Scholar 

  11. Prieto X, Srivastava R, Linares J, Montero C (1996) Prediction of space-charge density and space-charge field in thermally ion-exchanged planar surface waveguide. Opt Mater 5:145–151

    Article  CAS  Google Scholar 

  12. Helferich F, Plesset MS (1958) Ion exchange kinetics. A nonlinear problem. J Chem Phys 28:418–424

    Article  Google Scholar 

  13. Abou-el-Leil M, Cooper AR (1979) Analysis of field-assisted binary ion exchange. J Am Ceram Soc 62:390–395

    Article  CAS  Google Scholar 

  14. Lilienhof HJ, Voges E, Ritter D, Pantschew B (1982) Field-induced index profiles of multimode ion-exchanged strip waveguides. IEEE J Quantum Elect 18:1877–1883

    Article  Google Scholar 

  15. Albert J, Lit JWY (1990) Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides. Appl Opt 29:2798–2804

    Article  CAS  Google Scholar 

  16. Tervonen A (1990) A general model for fabrication processes of channel waveguides by ion exchange. J Appl Phys 67:2746–2752

    Article  CAS  Google Scholar 

  17. Cantor AJ, Abou-el-leil M, Hobbs RH (1991) Theory of 2-D ion exchange in glass: optimization of microlens arrays. Appl Opt 30:2704–2713

    Article  CAS  Google Scholar 

  18. Cheng D, Saarinen J, Saarikoski H, Tervonen A (1997) Simulation of field-assisted ion exchange for glass channel waveguide fabrication: effect of nonhomogeneous time-dependent electric conductivity. Opt Commun 137:233–238

    Article  CAS  Google Scholar 

  19. Lupascu A, Kevorkian A, Bondet T, Saint-André F, Persegol D, Levy M (1996) Modeling ion exchange in glass with concentration-depend diffusion coefficients and mobilities. Opt Eng 35:1603–1610

    Article  CAS  Google Scholar 

  20. Teray R, Hayami R (1975) Ionic diffusion in glasses. J Non-Cryst Solids 18:217–264

    Article  Google Scholar 

  21. Wakabayashi H (1996) The relationship between kinetic and thermodynamic properties in mixed alkali glass. J Non-Cryst Solids 203:274–279

    Article  CAS  Google Scholar 

  22. Day DE (1976) Mixed alkali glasses – their properties and uses. J Non-Cryst Solids 21:343–372

    Article  CAS  Google Scholar 

  23. Walker RG, Wilkinson CDW, Wilkinson JAH (1983) Integrated optical waveguiding structures made by silver ion-exchange in glass. 1: the propagation characteristic of stripe ion-exchanged waveguides; a theoretical and experimental investigation. Appl Opt 22:1923–1928

    Article  CAS  Google Scholar 

  24. Crank J (1956) Mathematics of diffusion. Oxford University Press, London

    Google Scholar 

  25. Inman JM, Bentley JL, Houde-Walter SN (1995) Modeling ion-exchanged glass photonics: the modified quasi-chemical diffusion coefficient. J Non-Cryst Solids 191:209–215

    Article  CAS  Google Scholar 

  26. Guggenheim EA (1967) Thermodynamics, 5th edn. North-Holland, Amsterdam

    Google Scholar 

  27. Ross L, Lilienhof HJ, Holscher H, Schlaak HF, Bran Brandenburg A (1986) Improved substrate glass for planar waveguide by Cs-ion exchange. Technical Digest, Topical Meeting on Integrated and Guided-Wave Optics, Atlanta, ThBB2, pp 25–26

    Google Scholar 

  28. Rivera VAG, Chillcce EF, Rodriguez E, Cesar CL, Barbosa LC (2006) Planar waveguides by ion Exchange in Er3+-doped tellurite glass. J Non-Cryst Solids 352:363–367

    Article  CAS  Google Scholar 

  29. Stewart G, Millar CA, Laybourn PJR, Wilkinson CDW, De La Rue RM (1997) Planar optical waveguide formed by silver migration in glass. IEEE J Quantum Elect 13:192

    Article  Google Scholar 

  30. Jackel JL, Lee KY, Favire FJ (1985) Do glass waveguide depolarize? J Lightwave Technol 3:818–820

    Article  Google Scholar 

  31. Chartier GH, Jaussaud P, Oliveira AD, Pamaux O (1977) Fast fabrication method for thick and highly multimode optical waveguides. Electron Lett 13:763–764

    Article  CAS  Google Scholar 

  32. Ross L, Fabricius N, Oeste H (1987) Single-mode integrated optical waveguides by ion-exchange in glass. Eur Fiber Opt Conf LAN 87:99–102

    Google Scholar 

  33. Eguchi RG, Maunders EA, Naik IK (1983) Fabrication of low loss waveguides in BK7 by ion exchange. Proc Soc Photo-Opt Instrum Eng 408:21–26

    CAS  Google Scholar 

  34. Lagu RK, Ramaswamy V (1984) Fabrication of single mode glass waveguides by electrolytic release of silver ions. Appl Phys Lett 45:117–118

    Article  CAS  Google Scholar 

  35. Rivera VAG, Chillcce EF, Rodriguez E, Cesar CL, Barbosa LC (2006) Waveguides produced by ion-exchange in Er3+-doped tellurite glass. Proc SPIE – Int Soc Opt Eng 6116:611610–611613

    Google Scholar 

  36. Prieto-Blanco X (2008) Electro-diffusion equations of monovalent cations in glass under charge neutrality approximation for optical waveguide fabrication. Opt Mater 31:418–428

    Article  CAS  Google Scholar 

  37. Rothmund V, Kornfeld G, Anorg Z (1918) Der basenaustausch im permutet. Z Anorg Allg Chem 103:129

    Article  CAS  Google Scholar 

  38. Albert J, Yip GL (1985) Refractive index profiles of planar waveguides made by ion-exchange in glass. Appl Opt 24:3692–3963

    Article  CAS  Google Scholar 

  39. Najafi SI, Suchoski PG Jr, Ramaswamy RV (1986) Silver film-diffused glass waveguides diffusion process and optical properties. IEEE J Quantum Elect 22:2213–2218

    Article  Google Scholar 

  40. Pantchev B, Danesh P (1997) Masking problem in the fabrication of optical waveguide structures in glass by double ion exchange. Jpn J Appl Phys 36:4320–4322

    Article  CAS  Google Scholar 

  41. Poyhonen P, Honkanen S, Tervonen A, Tahkokorpi M, Albert J (1991) Planar 1/8 splitter in glass by photoresist masked silver film ion exchange. Electron Lett 27:1319–1320

    Article  CAS  Google Scholar 

  42. Pantchev B, Danesh P, Nikolov Z (1993) Field-assisted ion exchange in glass: the effect of masking films. Appl Phys Lett 62(11):1212–1214

    Article  Google Scholar 

  43. Honkanen S, Tervonen A, Von Bagh H, Salin A, Leppihalme M (1987) Fabrication of ion-exchanged channel waveguides directly into integrated circuit mask plates. Appl Phys Lett 51:296–298

    Article  CAS  Google Scholar 

  44. Tervonen A, Honkanen S (1996) Feasibility of potassium-exchanged waveguides in BK7 glass for telecommunication devices. Appl Opt 35:6435–6437

    Article  CAS  Google Scholar 

  45. Miliou AN, Srivastava R, Ramaswamy RV (1991) Modeling of the index change in K+–Na+ ion-exchanged glass. Appl Opt 30:674–681

    Article  CAS  Google Scholar 

  46. Nascimento MLF, Souza LA, Ferreira EB, Zanotto ED (2005) Can glass stability parameters infer glass forming ability? J Non-Cryst Solids 351:3296–3308

    Article  CAS  Google Scholar 

  47. Brandenburg A (1986) Stress in ion-exchanged glass waveguides. J Light Technol 4:1580–1593

    Article  Google Scholar 

  48. French WG, Pearson AD (1970) Refractive index changes produced in glass by exchange. Am Ceram Soc Bull 49:974–977

    Google Scholar 

  49. White JM, Heidrich PF (1976) Optical waveguide refractive index profiles determined from measurement of mode indices: a simples analysis. Appl Opt 15:151–155

    Article  CAS  Google Scholar 

  50. Srivastava R, Kao CK, Ramaswamy RV (1987) WKB analysis of planar surface waveguides with truncated index profiles. J Light Technol 5:1605–1608

    Article  Google Scholar 

  51. Yip GL, Albert J (1985) Characterization of planar optical waveguides by K+-ion exchange in glass. Opt Lett 10:151–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank for the financial support by the Brazilian agencies Fapesp, CNPq, and CEPOF/INOF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Anthony Garcia Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rivera, V.A.G. (2012). Ion Exchange to Fabrication of Waveguides for Optical Telecommunication. In: Dr., I., Luqman, M. (eds) Ion Exchange Technology I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1700-8_14

Download citation

Publish with us

Policies and ethics