Skip to main content

Self-Organizing Dynamic Neural Fields

  • Conference paper
  • First Online:

Abstract

In this paper, we propose a model of cortical self-organization based on the dynamic field theory. Learning is made through the modification of feed-forward connections using a time invariant learning rule that allows for dynamic (or life-long) learning. This preliminary model suggests that cortical plasticity may be conveyed through feed-forward connections only while cortico-cortical connections role would be to ensure dynamic competition among cortical columns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Rougier and Y. Boniface, “Dynamic self-organising map,” Neurocomputing, vol. In Press, Corrected Proof, pp. –, 2011.

    Google Scholar 

  2. T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybernetics, vol. 43, pp. 59–69, 1982.

    Article  Google Scholar 

  3. S.-I. Amari, “Dynamic of pattern formation in lateral-inhibition type neural fields,” Biological Cybernetics, vol. 27, pp. 77–88, 1977.

    Article  CAS  PubMed  Google Scholar 

  4. J. Sirosh and R. Miikkulainen, “Self-organizing feature maps with lateral connections: Modeling ocular dominance,” in Proceedings of the 1993 Connectionist Models Summer School. Hillsdale, NJ: Erlbaum, Citeseer, 1994.

    Google Scholar 

  5. J. Bednar, J. De Paula, and R. Miikulainen, “Self-organization of color opponent receptive fields and laterally connected orientation maps,” Neurocomputing, vol. 65, pp. 69–76, 2005.

    Article  Google Scholar 

  6. H. Wilson and J. Cowan, “Excitatory and inhibitory interactions in localized populations of model,” Biophysics, vol. 12, pp. 1–24, 1972.

    CAS  Google Scholar 

  7. H. Wilson and J. Cowan, “A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue,” Kybernetic, vol. 13, pp. 55–80, 1973.

    Article  CAS  Google Scholar 

  8. J. Taylor, “Neural bubble dynamics in two dimensions: foundations,” Biological Cybernetics, vol. 80, pp. 5167–5174, 1999.

    Article  Google Scholar 

  9. S. Coombes, “Neural fields,” Scholarpedia, vol. 1, no. 6, p. 1373, 2006.

    Google Scholar 

  10. N. Rougier and J. Vitay, “Emergence of attention within a neural population,” Neural Networks, vol. 19, no. 5, pp. 573–581, 2006.

    Article  PubMed  Google Scholar 

  11. W. Erlhagen and E. Bicho, “The dynamic neural field approach to cognitive robotics,” Journal of Neural Engineering, 2006.

    Google Scholar 

  12. J. P. Spencer and G. Schöner, “An embodied approach to cognitive systems: A dynamic neural field theory of spatial working memory,” in Proceedings of the 28th Annual Conference of the Cognitive Science Society (CogSci 2006)Society (CogSci 2006), (Vancouver, Canada), pp. 2180–2185, 2006.

    Google Scholar 

  13. D. Buonomano and M. Merzenich, “Cortical plasticity: from synapses to maps,” Annual review of neuroscience, vol. 21, no. 1, pp. 149–186, 1998.

    Article  CAS  PubMed  Google Scholar 

  14. J. Kaas, “Plasticity of sensory and motor maps in adult mammals,” Annual review of neuroscience, vol. 14, no. 1, pp. 137–167, 1991.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas P. Rougier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rougier, N.P., Detorakis, G.I. (2013). Self-Organizing Dynamic Neural Fields. In: Yamaguchi, Y. (eds) Advances in Cognitive Neurodynamics (III). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4792-0_38

Download citation

Publish with us

Policies and ethics