Skip to main content

Biologically Inspired Closed-Loop Model of Precision Grip Lifting Task

  • Conference paper
  • First Online:
Advances in Cognitive Neurodynamics (III)

Abstract

We study precision grip performance (PGP) in human subjects with wide intrinsic variation in skin friction (μ). Two types of subjects (with high and low friction) are considered. Furthermore, change in PGP is studied under transiently varied conditions of μ (dry and wet). The experimental study is also supported by a computational model of PGP involving a nonlinear, closed-loop control scheme. Models of human PGP often deal with performance at a single μ value. However, studies on the effect of intrinsic friction (IF) as opposed to transient changes in friction on PGP are nearly non-existent, which forms the motivation for the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Napier, J.R: The prehensile movements of the human hand. J Bone Joint Surg Br Nov38-B(4) (1956) 902–13.

    Google Scholar 

  2. Forssberg, H., Eliasson, A.C., Kinoshita, H., Johansson, R.S., Westling, G: Development of human precision grip. I: Basic coordination of force. Exp Brain Res 85(2) (1991) 451–7.

    CAS  PubMed  Google Scholar 

  3. Westling, G., Johansson, R.S: Factors influencing the force control during precision grip. Exp Brain Res 53(2) (1984) 277–84.

    CAS  PubMed  Google Scholar 

  4. Flanagan, J.R., Vetter, P., Johansson, R.S., Wolpert, D.M: Prediction precedes control in motor learning. Curr Biol Jan 21 13(2) (2003) 146–50.

    Google Scholar 

  5. Johansson, R.S., Westling, G: Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp Brain Res 71(1) (1988) 59–71.

    CAS  PubMed  Google Scholar 

  6. Forssberg, H., Kinoshita, H., Eliasson, A.C., Johansson R.S., Westling G., Gordon, A.M: Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Exp Brain Res 90(2) (1992) 393–8.

    CAS  PubMed  Google Scholar 

  7. Gordon, A.M., Forssberg, H., Johansson, R.S., Eliasson, A.C., Westling, G: Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. Exp Brain Res 90(2) (1992) 399–403.

    CAS  PubMed  Google Scholar 

  8. Jenmalm, P., Goodwin, A.W., Johansson, R.S: Control of grasp stability when humans lift objects with different surface curvatures. J Neurophysiol 79(4) (1998) 1643–52.

    CAS  PubMed  Google Scholar 

  9. Forssberg, H., Eliasson, A.C., Kinoshita, H., Westling, G., Johansson, R.S: Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Exp Brain Res 104(2) (1995) 323–30.

    CAS  PubMed  Google Scholar 

  10. Johansson, R.S., Westling, G: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56(3) (1984) 550–64.

    CAS  PubMed  Google Scholar 

  11. Werremeyer, M.M., Cole, K.J: Wrist action affects precision grip force. J Neurophysiol 78(1) (1997) 271–80.

    CAS  PubMed  Google Scholar 

  12. Eliasson, A.C., Forssberg, H., Ikuta, K., Apel, I., Westling, G., Johansson, R.S: Development of human precision grip. V. anticipatory and triggered grip actions during sudden loading. Exp Brain Res 106(3) (1995) 425–33.

    CAS  PubMed  Google Scholar 

  13. Cadoret, G., Smith, A.M: Friction, not texture, dictates grip forces used during object manipulation. J Neurophysiol 75(5) (1996) 1963–9.

    CAS  PubMed  Google Scholar 

  14. Johansson, R: Dynamic use of internal models in the control of dexterous manipulation. Acta Physiol Scand 167(2) (1999) A10.

    PubMed  Google Scholar 

  15. Nowak, D. A., Glasauer, S., Hermsdörfer, J: How predictive is grip force control in the complete absence of somatosensory feedback? Brain 127(Pt 1) (2004) 182–92.

    Article  PubMed  Google Scholar 

  16. Muthukumar M., Babu K.S., Deepa K., Devasahayam S: Correlation of Skin Friction with Precision Grip under Dry and Wet Conditions. (manuscript submitted)

    Google Scholar 

  17. Doya, K., Sejnowski, T.J: A novel reinforcement model of birdsong vocalization learning. Advances in Neural Information Processing Systems 7, MIT Press, (1995) 101–108.

    Google Scholar 

  18. Varsek A., Urbacic T., Filipic B: Genetic Algorithms in Controller Design and Tuning, IEEE Trans. Sys.Man and Cyber. 23 (5) (1993) 1330–1339.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support of the Department of Biotechnology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srinivasa Chakravarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gupta, A. et al. (2013). Biologically Inspired Closed-Loop Model of Precision Grip Lifting Task. In: Yamaguchi, Y. (eds) Advances in Cognitive Neurodynamics (III). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4792-0_73

Download citation

Publish with us

Policies and ethics