Skip to main content

Biotechnological Production of Xylitol from Biomass

  • Chapter
  • First Online:
Book cover Production of Platform Chemicals from Sustainable Resources

Abstract

Xylitol is a polyol of interest to food, dental and pharmaceutical industries because of its favorable characteristics such as sweetening capacity, insulin-independent metabolism effects and its lack of carcinogenic properties. It is usually produced by chemical processes that are expensive due to their high energy consumption and many purification steps. Biotechnological routes are promising because they can be carried out using mild conditions and have the possibility of using hydrolysates from renewable sources as raw materials without the need of extensive purification of xylose before the fermentation step. Different lignocellulosic materials have been studied as alternative raw materials in the fermentative process for xylitol production. However, the structure of lignocellulose is recalcitrant and a pretreatment step is necessary to release monomeric sugars that does not form compounds toxic to microorganisms. Another challenge for xylitol production by fermentation is the identification of efficient microorganisms for converting the pentose sugars present in hemicellulosic hydrolysates. Different strategies have also been investigated, aiming to optimize the biotechnological way, such as use of different configurations of bioreactors, process options and downstream steps. This chapter will explore biotechnological xylitol production from the selection and preparation of the raw material to fermentative process conditions, downstream strategies and future perspectives. These topics will be discussed to offer readers a better understanding of biotechnological routes to xylitol as well as their potential and future prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salli KM, Forssten SD, Lahtinen SJ, Ouwehand AC. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator. Arch Oral Biol. 2016;70:39–46.

    Article  CAS  PubMed  Google Scholar 

  2. Santi E, Facchin G, Faccio R, Barroso RP, Costa-Filho AJ, Borthagaray G, Torre MH. Antimicrobial evaluation of new metallic complexes with xylitol active against P. aeruginosa and C. albicans: MIC determination, post-agent effect and Zn-uptake. J Inorg Biochem. 2016;155:67–75.

    Article  CAS  PubMed  Google Scholar 

  3. Rufino AR, Biaggio FC, Santos JC, de Castro HF. Screening of lipases for the synthesis of xylitol monoesters by chemoenzymatic esterification and the potential of microwave and ultrasound irradiations to enhance the reaction rate. Int J Biol Macromol. 2010;47(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  4. Albarrán-Preza E, Corona-Becerril D, Vigueras-Santiago E, Hernández-López S. Sweet polymers: synthesis and characterization of xylitol-based epoxidized linseed oil resins. Eur Polym J. 2016;75:539–51.

    Article  CAS  Google Scholar 

  5. Prakasham RS, Sreenivas RR, Hobbs PJ. Current trends in biotechnology production of xylitol and future prospects. Curr Trends Biotechnol Pharm. 2009;3:8–36.

    CAS  Google Scholar 

  6. Zhang J, Geng A, Yao C, Lu Y, Li Q. Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresour Technol. 2012;105:134–41.

    Article  CAS  PubMed  Google Scholar 

  7. Rafiqul ISM, Mimi Sakinah AM. Bioproduction of xylitol by enzyme technology and future prospects. Int Food Res J. 2012;19:405–8.

    CAS  Google Scholar 

  8. Chen X, Jiang Z, Chen S, Qin W. Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci. 2010;6(7):834–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tamburini E, Costa S, Marchetti SC, Pedrini P. Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules. 2015;5:1979–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pepper T, Olinger PM. Xylitol in sugar-free confections. Food Technol. 1988;42(10):98–106.

    Google Scholar 

  11. Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA. Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci. 2015;55:1514–28.

    Article  CAS  Google Scholar 

  12. Vandeska E, Amartey S, Kuzmanova S, Jeffries TW. Fed-batch culture for xylitol production by Candida boidinii. Process Biochem. 1996;31:265–70.

    Article  CAS  Google Scholar 

  13. Mayerhoff ZDVL, Roberto IC, da Silva SS. Xylitol production from rice straw hemicellulose hydrolysate using different yeast strains. Biotechnol Lett. 1997;19(5):407–9.

    Article  CAS  Google Scholar 

  14. Kim SY, Kim JH, Oh DK. Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J Ferment Bioeng. 1997;83:267–70.

    Article  CAS  Google Scholar 

  15. Saha BE, Bothast JR. Production of xylitol by Candida peltata. J Ind Microbiol Biot. 1999;22:633–6.

    Article  CAS  Google Scholar 

  16. Suryadi H, Katsuragi T, Yoshida N, Suzuki S, Tani Y. Polyol production by culture of methanol-utilizing yeast. J Biosci Bioeng. 2000;89:236–40.

    Article  CAS  PubMed  Google Scholar 

  17. Sampaio FC, Torre P, Passos FM, Perego P, Passos FJ, Converti A. Xylose metabolism in Debaryomyces hansenii UFV-170: effect of the specific oxygen uptake rate. Biotechnol Prog. 2004;6:1641–50.

    Article  CAS  Google Scholar 

  18. Lopez F, Delgado OD, Martinez MA, Spencer JF, Figueroa LI. Characterization of a new xylitol-producer Candida tropicalis strain. Antonie Van Leeuwenhoek. 2004;85:281–6.

    Article  CAS  PubMed  Google Scholar 

  19. Guo C, Zhao C, He P, Lu D, Shen A, Jiang N. Screening and characterization of yeasts for xylitol production. J Appl Microbiol. 2006;101:1096–104.

    Article  CAS  PubMed  Google Scholar 

  20. Mussatto SI, Roberto IC. Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem. 2008;43:540–6.

    Article  CAS  Google Scholar 

  21. Rodrigues RCLB, Kenealy WR, Jeffries TW. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30. J Ind Microbiol Biotechnol. 2011;38:1649–55.

    Article  CAS  PubMed  Google Scholar 

  22. Cadete RM, Melo MA, Dussán KJ, Rodrigues RC, Silva SS, Zilli JE, Vital MJ, Gomes FC, Lachance MA, Rosa CA. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian amazonian forest. PLoS One. 2012;7:431–5.

    Article  CAS  Google Scholar 

  23. Ramesh S, Muthuvelayudham R, Kannan RR, Viruthagiri T. Enhanced production of xylitol from corncob by Pachysolen tannophilus using response surface methodology. Int J Food Sci. 2013;2013:Article ID 514676.

    Google Scholar 

  24. Pal S, Choudhary V, Kumar A, Biswas D, Mondal AK, Sahoo DK. Studies on xylitol production by metabolic pathway engineered Debaryomyces hansenii. Bioresour Technol. 2013;147:449–55.

    Article  CAS  PubMed  Google Scholar 

  25. Albuquerque TL, Gomes SDL, Marques Jr JE, Silva Jr IJ, Rocha MVP. Xylitol production from cashew apple bagasse by Kluyveromyces marxianus CCA510. Catal Today. 2015;255:33–40.

    Article  CAS  Google Scholar 

  26. Guamán-Burneo MC, Dussán KJ, Cadete RM, Cheab MAM, Portero P, Carvajal-Barriga EJ, da Silva SS, Rosa CA. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov. Antonie Van Leeuwenhoek. 2015;108(4):919–31.

    Article  PubMed  CAS  Google Scholar 

  27. Cadete RM, Cheab MA, Santos RO, Safar SV, Zilli JE, Basso LC, Lee CF, Kurtzman CZ. Cyberlindnera xylosilytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials. Int J Syst Evol Microbiol. 2015;65(9):2968–74.

    Article  CAS  PubMed  Google Scholar 

  28. Yoshitake J, Ohiwa H, Shimamura M, Imai T. Production of polyalcohol by a Corynebacterium sp Part I. Production of pentitol from aldopentose. Agric Biol Chem. 1971;35:905–11.

    CAS  Google Scholar 

  29. Yoshitake J, Ishizaki H, Shimamura M, Imai T. Xylitol production by an Enterobacter species. Agric Biol Chem. 1973;37:2261–6.

    Article  CAS  Google Scholar 

  30. Izumori K, Tuzaki K. Production of xylitol from D-xylulose by Mycobacterium smegmatis. J Ferment Technol. 1988;66:33–6.

    Article  CAS  Google Scholar 

  31. Suihko ML, Suomalainen I, Enari TM. D-xylose catabolism in Fusarium oxysporum. Biotechnol Lett. 1983;5:525–30.

    Article  Google Scholar 

  32. Dahiya JS. Xylitol production by Petromyces albertensis grown on medium containing D-xylose. Can J Microbiol. 1991;37:14–31.

    Article  CAS  Google Scholar 

  33. Sampaio FC, da Silveira WB, Chaves-Alves VM, Passos FML, Coelho JLC. Screening of filamentous fungi for production of xylitol from D-xylose. Braz J Microbiol. 2003;34:325–8.

    Article  Google Scholar 

  34. Rangaswamy S, Agblevor FA. Screening of facultative anaerobic bacteria utilizing D-xylose for xylitol production. Appl Microbiol Biotechnol. 2002;60:88–93.

    Article  CAS  PubMed  Google Scholar 

  35. Kelly C, Jones O, Barnhart C, Lajoie C. Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. Appl Biochem Biotechnol. 2008;148(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  36. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hag-erdahl B, Penttila M, Keranen S. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology. 1991;9:1090–6.

    Article  CAS  PubMed  Google Scholar 

  37. Sazaki M, Inui M, Yukawa H. Microorganisms for xylitol production: focus on strain improvement. In: da Silva SS, Chandel AK, editors. D-xylitol fermentative production, application and commercialization. Heidelberg: Springer; 2012. p. 109–31.

    Google Scholar 

  38. Winkelhausen E, Kuzmanova S. Microbial conversion of D-xylose to xylitol. J Ferment Bioeng. 1998;86:1–14.

    Article  CAS  Google Scholar 

  39. Pal S, Mondal AK, Sahoo DK. Molecular strategies for enhancing microbial production of xylitol. Process Biochem. 2016;51:809–19.

    Article  CAS  Google Scholar 

  40. Yoshitake J, Shimamura K, Ishizaki H, Iris Y. Xylitol production by Enterobacter liquefaciens. Agric Biol Chem. 1976;40:1493–503.

    CAS  Google Scholar 

  41. van Dijken JP, Scheffers WA. Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Lett. 1986;32:199–224.

    Article  Google Scholar 

  42. Silva DDV, Felipe MGA. Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. J Chem Technol Biot. 2006;81:1294–300.

    Article  CAS  Google Scholar 

  43. Su B, Wu M, Lin J, Yang L. Metabolic engineering strategies for improving xylitol production from hemicellulosic sugars. Biotechnol Lett. 2013;35:1781–9.

    Article  CAS  PubMed  Google Scholar 

  44. Jeon WY, Shim WY, Lee SH, Choi JH, Kim JH. Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioproc Biosyst Eng. 2013;36:809–17.

    Article  CAS  Google Scholar 

  45. Jeon WY, Yoon BH, Ko BS, Shim WY, Kim JH. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioproc Biosyst Eng. 2012;35:191–8.

    Article  CAS  Google Scholar 

  46. Ahmad I, Shim WY, Jeon WY, Yoon BH, Kim JH. Enhancement of xylitol production in Candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst Eng. 2012;35:199–204.

    Article  CAS  PubMed  Google Scholar 

  47. Lee JK, Koo BS, Kim SY. Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol. 2003;69:6179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jeon YJ, Shin HS, Rogers PL. Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol. 2011;53:106–13.

    Article  CAS  PubMed  Google Scholar 

  49. Oh EJ, Ha SJ, Rin Kim S, Lee WH, Galazka JM, Cate JH, Jin YS. Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng. 2013;15:226–34.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, Zhang B, Wang D, Gao X, Hong J. Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour Technol. 2015;175:642–5.

    Article  CAS  PubMed  Google Scholar 

  51. Cirino PC, Chin JW, Ingram LO. Engineering Escherichia coli for xylitol production from glucose–xylose mixtures. Biotechnol Bioeng. 2006;95:1167–76.

    Article  CAS  PubMed  Google Scholar 

  52. Nair NU, Zhao H. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metab Eng. 2010;12:462–8.

    Article  CAS  PubMed  Google Scholar 

  53. Akinterinwa O, Cirino PC. Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng. 2009;11:48–55.

    Article  CAS  PubMed  Google Scholar 

  54. Sasaki M, Jojima T, Inui M, Yukawa H. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol. 2010;86:1057–66.

    Article  CAS  PubMed  Google Scholar 

  55. Dhar KS, Wendisch VF, Nampoothiri KM. Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol. 2016;230:63–71.

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki S, Sugiyama M, Mihara Y, Hashiguchi K, Yokozeki K. Novel enzymatic method for the production of xylitol from D-arabitol by Gluconobacter oxydans. Biosci Biotechnol Biochem. 2002;66:2614–20.

    Article  CAS  PubMed  Google Scholar 

  57. Wang TH, Zhong YH, Huang W, Liu T, You YW. Antisense inhibition of xylitol dehydrogenase gene, xdh1 from Trichoderma reesei. Lett Appl Microbiol. 2005;40:424–9.

    Article  CAS  PubMed  Google Scholar 

  58. Nidetzky B, Neuhauser W, Haltrich D, Kulbe KD. Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor. Biotechnol Bioeng. 1996;52:387–96.

    Article  CAS  PubMed  Google Scholar 

  59. Branco RF, Chandel AK, da Silva SS. Enzymatic production of xylitol: current status and future perspectives. In: Silva SS, Chandel AK, editors. D-Xylitol fermentative production, application and commercialization. Heidelberg: Springer; 2012. p. 193–204.

    Google Scholar 

  60. Santos JC, Converti A, Carvalho W, Mussatto SI, Silva SS. Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochem. 2005;40:113–8.

    Article  CAS  Google Scholar 

  61. Albuquerque TL, Silva Jr IJ, Macedo GR, Rocha MVP. Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem. 2014;49:1779–89.

    Article  CAS  Google Scholar 

  62. Canilha L, Santos VTO, Rocha GJM, Silva JBA, Giulietti M, Silva SS, Felipe MGA, Ferraz A, Milagres AMF, Carvalho W. A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. J Ind Microbiol Biotechnol. 2011;38:1467–75.

    Article  CAS  PubMed  Google Scholar 

  63. Silva AS, Inoue H, Endo T, Yano S, Bon EPS. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresour Technol. 2010;101:7402–9.

    Article  CAS  Google Scholar 

  64. Roberto IC, Mussatto SI, Rodrigues RCLB. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crop Prod. 2003;17:171–6.

    Article  CAS  Google Scholar 

  65. Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48:3713–29.

    Article  CAS  Google Scholar 

  66. Pointner M, Kutter P, Obrlik T, Kahr H. Composition of corncobs as substrate for fermentation of fuels. Agron Res. 2014;12:391–6.

    Google Scholar 

  67. Sun RC, Tomkinson J, Wang YX, Xiao B. Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer. 2000;41:2647–56.

    Article  CAS  Google Scholar 

  68. CONAB 2015/2016 – Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira: cana-de-açúcar. Available on http://www.conab.gov.br/OlalaCMS/uploads/arquivos/15_12_17_09_03_29_boletim_cana_portugues_-_3o_lev_-_15-16.pdf. Accessed 21 Jan 2016.

  69. Canilha L, Carvalgo W, Felipe MGA, Silva JBA, Giulietti M. Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol. 2010;161:84–92.

    Article  CAS  PubMed  Google Scholar 

  70. Silva DDV, Mancilha IM, Silva SS, Felipe MGA. Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate. Braz Arch Biol Technol. 2007;50:207–15.

    Article  Google Scholar 

  71. Hernández-Pérez AF, Arruda PV, Felipe MGA. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Braz J Microbiol. 2016;47:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ping Y, Ling H, Song G, Ge J. Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem Eng J. 2013;75:86–91.

    Article  CAS  Google Scholar 

  73. Wang W, Ling H, Zhao H. Steam explosion pretreatment of corn straw on xylose recovery and xylitol production using hydrolysate without detoxification. Process Biochem. 2015;50:1623–8.

    Article  CAS  Google Scholar 

  74. Canilha L, Silva JBA, Felipe MGA, Carvalho W. Batch xylitol production from wheat straw hemicellulosic hydrolysate using Candida guilliermondii in a stirred tank reactor. Biotechnol Lett. 2003;25:1811–4.

    Article  CAS  PubMed  Google Scholar 

  75. Martínez ML, Sánchez S, Bravo V. Production of xylitol and ethanol by Hansenula polymorpha from hydrolysates of sunflower stalks with phosphoric acid. Ind Crop Prod. 2012;40:160–6.

    Article  CAS  Google Scholar 

  76. Mateo S, Puentes JG, Moya AJ, Sánchez S. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresour Technol. 2015;190:1–6.

    Article  CAS  PubMed  Google Scholar 

  77. Martini C, Tauk-Tornisielo SM, Codato CB, Bastos RG, Ceccato-Antonini SR. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. World J Microbiol Biotechnol. 2016;32:80.

    Article  PubMed  CAS  Google Scholar 

  78. da Silva SS, Chandel AK. Xylitol: fermentative production, application and commercialization. 1st ed. Berlin/New York: Springer; 2012. 348p.

    Google Scholar 

  79. Carvalho W, Batista MA, Canilha L, Santos JC, Converti A, Silva SS. Sugarcane bagasse hydrolysis with phosphoric and sulfuric acids and hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol. 2004;79(11):1308–12.

    Article  CAS  Google Scholar 

  80. Nguyen QA, Tucker MP, Keller FA, Eddy FP. Two-stage dilute-acid pretreatment of softwoods. ApplBiochemBiotechnol. 2000;84(86):561–76.

    Google Scholar 

  81. Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP. Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol. 1999;77(79):133–42.

    Article  Google Scholar 

  82. Kumar S, Dheeran P, Singh SP, Mishra IM, Adhikari DK. Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess Biosyst Eng. 2015;38:39–47.

    Article  CAS  PubMed  Google Scholar 

  83. Ma XJ, Yang XF, Zheng X, Lin L, Chen LH, Haung LL, Cao SL. Degradation and dissolution of hemicellulose during bamboo hydrothermal pretreatment. Bioresour Technol. 2014;161:215–20.

    Article  CAS  PubMed  Google Scholar 

  84. Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6:1–10.

    Article  CAS  Google Scholar 

  85. Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA. Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr. 2013;55:1514–28.

    Article  CAS  Google Scholar 

  86. Jurado M, Prieto A, Martínez-Alcalá Á, Martínez ÁT, Martínez MJ. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol. 2009;100:6378–84.

    Google Scholar 

  87. Alriksson B, Sjöde A, Nilvebrant NO, Jönsson LJ. Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. In: McMillan JD, Adney WS, Mielenz JR, Klasson KT, editors. Twenty-seventh symposium on biotechnology for fuels and chemicals. Totowa: Humana Press; 2006.

    Google Scholar 

  88. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem. 2004;39:1533–42.

    Article  CAS  Google Scholar 

  89. Mateo S, Roberto IC, Sánchez S, Moya AJ. Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind Crop Prod. 2013;49:196–203.

    Article  CAS  Google Scholar 

  90. Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol. 1999;77:91–103.

    Article  Google Scholar 

  91. Villarreal MLM, Prata AMR, Felipe MGA, Almeida E, Silva JB. Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzym Microb Technol. 2006;40:17–24.

    Article  CAS  Google Scholar 

  92. Kamal SSM, Mohamad NL, Abdullah AGL, Abdullah N. Detoxification of sago trunk hydrolysate using activated charcoal for xylitol production. Procedia Food Sci. 2011;1:908–13.

    Article  CAS  Google Scholar 

  93. Vithanage LNG, Barbosa AM, Kankanamge GRN, Rakshit SK, Dekker RFH. Valorization of hemicelluloses: production of bioxylitol from poplar wood prehydrolyzates by Candida guilliermondii FTI 20037. Bioenergy Res. 2015;9:181–97.

    Article  CAS  Google Scholar 

  94. Prakasha G, Varmab AJ, Prabhunea A, Shouchec Y, Rao M. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol. 2011;102(3):3304–8.

    Article  CAS  Google Scholar 

  95. Maciel de Mancilha I, Karim MN. Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog. 2003;19:1837–41.

    Article  CAS  PubMed  Google Scholar 

  96. Carvalho W, Silva SS, Converti A, Vitolo M, Felipe MG, Roberto IC, Silva MB, Mancilha IM. Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate: cell immobilization conditions. Appl Biochem Biotechnol. 2002;98(100):489–96.

    Article  PubMed  Google Scholar 

  97. Carvalho W, Silva SS, Santos JC, Converti A. Xylitol production by Ca-alginate entrapped cells: comparison of different fermentation systems. Enzym Microb Technol. 2003;32:553–9.

    Article  CAS  Google Scholar 

  98. Sarrouh B, Silva SS. Repeated batch cell-immobilized system for the biotechnological production of xylitol as a renewable green sweetener. Appl Biochem Biotechnol. 2013;1:1–12.

    Article  Google Scholar 

  99. Wang C, Li Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv. 2012;30(6):1447–57.

    Article  CAS  Google Scholar 

  100. Wendhausen R. Estudo sobre utilização de crisotila como suporte de células de Saccharomyces cerevisiae para uso em processo contínuo de fermentação alcoólica e biorreduções. Brazil: University of Campinas – UNICAMP; 1998. 360p. (Dissertation).

    Google Scholar 

  101. Duarte JC, Rodrigues JAR, Moran PJS, Valença GP, Nunhez JR. Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express. 2013;3:31–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Santos JC, Carvalho W, Silva SS, Converti A. Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flow rate. Biotechnol Prog. 2003;19:1210–5.

    Article  CAS  PubMed  Google Scholar 

  103. Gong C, Chen LF, Flickinger MC, Tsao GT. Conversion of hemicellulose carbohydrates. Adv Biochem Eng Biotechnol. 1981;20:93–118.

    CAS  Google Scholar 

  104. Kim JH, Han KC, Koh YH, Ryu YW, Seo JH. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol. 2002;29:16–9.

    Article  CAS  PubMed  Google Scholar 

  105. Sirisansaneeyakul S, Wannawilai S, Chisti Y. Repeated fed-batch production of xylitol by Candida magnoliae TISTR 5663. J Chem Technol Biotechnol. 2013;88:1121–9.

    Article  CAS  Google Scholar 

  106. Maxon WD. Continuous fermentation, a discussion of its principles and application. Microbiol Process Rep. 1954;28:110–21.

    Google Scholar 

  107. Martínez AE, Silva SS, Felipe MGA. Effect of the oxygen transfer coefficient on xylitol production from sugarcane bagasse hydrolysate by continuous stirred-tank reactor fermentation. Appl Biochem Biotechnol. 2000;84:633–41.

    Article  PubMed  Google Scholar 

  108. Rao VL, Goli JK, Gentela J, Koti S. Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresour Technol. 2016;213:299–310.

    Article  CAS  Google Scholar 

  109. Martínez EA, Silva SS, Almeida E, Silva JB, Solenzal AIN, Felipe MGA. The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolysate by C. guilliermondii. Process Biochem. 2003;38:1677–83.

    Article  CAS  Google Scholar 

  110. Roca E, Meinander N, Hahn-Hagerdal B. Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor. J Chem Inf Model. 1996;53:1689–99.

    Google Scholar 

  111. Faria LFF, Pereira N, Nobrega R. Xylitol production from D-xylose in a membrane bioreactor. Desalination. 2002;149:231–6.

    Article  CAS  Google Scholar 

  112. Zahed O, Jouzani GS, Abbasalizadeh S, Khodaiyan F, Tabatabaei M. Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol. 2016;61:179–89.

    Article  CAS  Google Scholar 

  113. De Faveri D, Torre P, Perego P, Converti A. Optimization of xylitol recovery by crystallization from synthetic solutions using response surface methodology. J Food Eng. 2004;61(3):407–12.

    Article  Google Scholar 

  114. Martínez EA, de Almeida e Silva JB, Giulietti M, Solenzal AIN. Downstream process for xylitol produced from fermented hydrolysate. Enzym Microb Technol. 2007;40(5):1193–8.

    Article  CAS  Google Scholar 

  115. Silva SS, Ramos RM, Rodrigues DC, Mancilha IM. Downstream processing for xylitol recovery from fermented sugar cane bagasse hydrolysate using aluminium polychloride. Z Naturforsch C. 2000;55(1–2):10–5.

    CAS  PubMed  Google Scholar 

  116. Wei J, Yuan Q, Wang T, Wang L. Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Front Chem Eng China. 2010;4(1):57–64.

    Article  CAS  Google Scholar 

  117. Mullin JW. Crystallization. 4th ed. Oxford: Butterworth-Heinemann; 2001.

    Google Scholar 

  118. Martínez EA, Giulietti M, de Almeida e Silva JB, Derenzo S. Kinetics of the xylitol crystallization in hydro-alcoholic solution. Chem Eng Process Process Intensif. 2008;47(12):2157–62.

    Article  CAS  Google Scholar 

  119. Affleck RP. Recovery of xylitol from fermentation of model hydrolysate using membrane technology. Vol. Master of Science in Biological Systems Engineering. Blacksburg: State University of Virginia; 2000.

    Google Scholar 

  120. Gurgel PV, Mancilha IM, Peçanha RP, Siqueira JFM. Xylitol recovery from fermented sugarcane bagasse hydrolyzate. Bioresour Technol. 1995;52(3):219–23.

    Article  CAS  Google Scholar 

  121. Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena RK. Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol. 2011;78(3):266–73.

    Article  CAS  Google Scholar 

  122. Mussatto SI, Santos JC, Ricardo Filho WC, Silva SS. A study on the recovery of xylitol by batch adsorption and crystallization from fermented sugarcane bagasse hydrolysate. J Chem Technol Biotechnol. 2006;81(11):1840–5.

    Article  CAS  Google Scholar 

  123. Sampaio FC, Passos FML, Passos FJV, De Faveri D, Perego P, Converti A. Xylitol crystallization from culture media fermented by yeasts. Chem Eng Process Process Intensif. 2006;45(12):1041–6.

    Article  CAS  Google Scholar 

  124. Shaw C. Global Xylitol demand to surge to US$1Bn by 2020. 2014. Companiesandmarkets.com – Tue, May 27, 2014. Available at https://uk.finance.yahoo.com/news/global-xylitol-demand-surge-us-000000759.html. Accessed Nov 2016.

  125. Canilha L, Rodrigues RCLB, Antunes FAF, Chandel AK, Milessi TSS, Felipe MGA, da Silva SSS. Bioconversion of hemicellulose from sugarcane biomass into sustainable products. In: Chandel AK, da Silva SS, editors. Sustainable degradation of lignocellulosic biomass – techniques, applications and commercialization: InTech; 2013. doi:10.5772/53832. isbn:978-953-51-1119-1. Available from: http://www.intechopen.com/books/sustainable-degradation-of-lignocellulosic-biomass-techniques-applications-and-commercialization/bioconversion-of-hemicellulose-from-sugarcane-biomass-into-sustainable-products.

  126. Islam MS, Indrajit M. Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats. Ann Nutr Metab. 2012;61:57–64.

    Article  CAS  PubMed  Google Scholar 

  127. De Jong E, Higson A, Walsh P, Wellisch M. Value added products from biorefineries. IEA Bioenergy. 2012. Available: http://www.ieabioenergy.com/wp-content/uploads/2013/10/Task-42-Biobased-Chemicals-value-added-products-from-biorefineries.pdf. Accessed July 2016.

  128. Research and Markets. Global Xylitol Market 2016–2020. 2015. http://www.researchandmarkets.com/research/dmslk6/global_xylitol. Accessed July 2016.

  129. Research and Markets. Xylitol – A Global Market Overview. 2014. http://www.researchandmarkets.com/reports/2846975/xylitol-a-global-market-overview. May 2014. Accessed July 2016.

  130. Branco RF, Santos JC, Silva SS. A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioenergy. 2011;35:3241–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq) (Award Number 300127/2015-4), Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES), and the Research Council for the State of São Paulo (FAPESP) (Award Number 2014/27055-2) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Silvério da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Antunes, F.A.F. et al. (2017). Biotechnological Production of Xylitol from Biomass. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Platform Chemicals from Sustainable Resources. Biofuels and Biorefineries. Springer, Singapore. https://doi.org/10.1007/978-981-10-4172-3_10

Download citation

Publish with us

Policies and ethics