Skip to main content

Bioremediation: A Low-Cost and Clean-Green Technology for Environmental Management

  • Chapter
  • First Online:
Microbial Bioremediation & Biodegradation

Abstract

As the industry advances and the world population increases, the planet has accumulated the waste generated by human activity. Many of them are nondegradable and others of slow degradation that favor their accumulation in nature without adequate treatment. Although oil spills are the most notorious episodes, there is a range of pollutants derived from all types of industry such as pesticides, refrigerants, solvents, detergents, heavy metals, and the already abundant plastics. Faced with this problem, the use of microorganisms is a valuable tool in the remediation of soils, taking advantage of its metabolic potential, adaptability insurmountable to different environments, and the symbiotic behavior that can establish with plants. Genetic engineering has also given way to the study of genetically modified microorganisms as bioremediation agents, which express specific genes in the presence of pollutants. The bacterial species mostly used in bioremediation are Acinetobacter sp., Burkholderia cepacia, Deinococcus radiodurans, Dehalococcoides ethenogenes, Pseudomonas aeruginosa, Pseudomonas putida, and some fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) Open journal of environmental biology the role of microorganisms in bioremediation-a review (en línea). Open J Environ Biol 2(1):38–46. https://doi.org/10.17352/ojeb.000007

    Article  Google Scholar 

  • Abdelhameed RE, Metwally RA (2019) Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. Int J Phytoremediation 28:1–9

    Google Scholar 

  • Access, O. 2018 We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1%. Long-Haul Travel Motivation by International Tourist to Penang i(tourism):13

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risk of metals. Springer, New York, p 867

    Book  Google Scholar 

  • Ahmad P (2016) Plant metal interaction: emerging remediation techniques. s.l., s.e. 619 p. doi:https://doi.org/10.1016/B978-0-12-803158-2.00002-3

  • Aibibu N et al (2010) Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical parameters. Bioresour Technol 101:6297–6303

    Article  CAS  Google Scholar 

  • Ajayi AO, Abiola AK (2018) Microbial diversity of petroleum polluted soil at Ayetoro community in Ilaje Riverine oil producing areas of Ondo state, Nigeria. Prog Petrochem Sci 1(5):1–7. https://doi.org/10.31031/pps.2018.01.000525

    Article  Google Scholar 

  • Ali H, Khan E, Sjad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Heavy metals in soils, trace metals and metalloids in soils and their bioavailability, 3rd edn. Springer, Reading, p 587. https://doi.org/10.1007/978-94-007-4470-7

    Book  Google Scholar 

  • Arias S, Betancur F, Gómez G, Salazar J, Hernández M (2010) Fitorremediación con humedales artificiales para el tratamiento de aguas residuales porcinas. Informador Técnico (Colombia) 74:12–22

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders -strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654. https://doi.org/10.1080/01904168109362867

    Article  CAS  Google Scholar 

  • Beltrán-Pineda ME, Gómez-Rodríguez AM (2016) Biorremediación de Metales Pesados Cadmio (Cd), Cromo (Cr) y Mercurio (Hg), Mecanismos Bioquímicos e Ingeniería Genética: Una Revisión. Revista Facultad De Ciencias Básicas 12(2):172–197. https://doi.org/10.18359/rfcb.2027

    Article  Google Scholar 

  • Benitez-Campo N. (2011). Cleaner production and bioremediation for reduction of pollution in the industry of chrome tannery. Universidad del Valle, Cali, Colombia. Ambiente y Sostenibilidad (1):25–31. doi:https://doi.org/10.25100/ays.v1i1.4335

  • Bosse M, Heuwieser A, Heinzel A, Lukas A, Oliveira G, Mayer B (2018) Biomarker panels for characterizing microbial community biofilm formation as composite molecular process. PLoS One 13(8):1–20. https://doi.org/10.1371/journal.pone.0202032

    Article  CAS  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev Camb Philos Soc 79(3):473–495. Review

    Article  Google Scholar 

  • Cabral L, Soares CRFS, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31(11):1655–1664

    Article  CAS  Google Scholar 

  • Cabrera C (2014) The concept and vision of development as a basis for evaluation. Econ Soc 18(30):47–65

    Google Scholar 

  • Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradere P, Guiresse M (2008) Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma 144(1–2):287–298

    Article  CAS  Google Scholar 

  • Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  Google Scholar 

  • Driver JD, Holben WE, Rillig MC (2005) Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol Biochem 37:101–106

    Article  CAS  Google Scholar 

  • Duffus JH (2002) Heavy metals – a meaningless term? (IUPAC technical report). Pure Appl Chem 74:793–807. https://doi.org/10.1351/pac200274050793

    Article  CAS  Google Scholar 

  • Ezekoye CC et al (2018a) Framework for monitoring bioremediation projects by regulatory agencies. Clin Biotechnol Microbiol 2.5:457–471

    Google Scholar 

  • Ezekoye CC, Chikere CB, Okpokwasili GC (2018b) Field metagenomics of bacterial community involved in bioremediation of crude oil-polluted soil. J Bioremed Biodegr 09(05). https://doi.org/10.4172/2155-6199.1000449

  • Ferrera-Cerrato R, Rojas-Avelizapa N, Poggi-Varaldo HM, Alarcón A, Cañizares-Villanueva RO (2006) Procesos de biorremediación de suelo y agua contaminados por hidrocarburos del petróleo y otros compuestos orgánicos. Rev Latinoam Microbiol 48(2):179–187

    Google Scholar 

  • Garzón JM, Rodríguez-Miranda JP, Hernández-Gómez C (2017) Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Universidad y Salud 19(2):309–318. https://doi.org/10.22267/rus.171902.93

    Article  Google Scholar 

  • Gastauer M, Vera MPO, de Souza KP, Pires ES, Alves R, Caldeira CF, Ramos SJ, Oliveira G (2019) Data descriptor: a metagenomic survey of soil microbial communities along a rehabilitation chronosequence after iron ore mining (en línea). Scientific Data 6:1–10. https://doi.org/10.1038/sdata.2019.8

    Article  CAS  Google Scholar 

  • Ghosh S, Das AP (2018) Metagenomic insights into the microbial diversity in manganese-contaminated mine tailings and their role in biogeochemical cycling of manganese (en línea). Sci Rep 8(1):1–12. https://doi.org/10.1038/s41598-018-26311-w

    Article  CAS  Google Scholar 

  • Ginocchio R (2000) Effects of a copper smelter on a grassland community in the Puchuncavi Valley, Chile. Chemosphere 41:15–23

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez C, D’Haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297

    Article  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  Google Scholar 

  • Gratao PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean-up of toxic metals in the environment. Braz J Plant Physiol 17:53–64. https://doi.org/10.1590/S1677-04202005000100005

    Article  CAS  Google Scholar 

  • Herrera L (2017) New technologies for cleaner production: a state of the art. Polytechnic University Salesiana of Ecuador. Academic article. Available at: https://dspace.ups.edu.ec/bitstream/123456789/14334/1/UPS-GT001912.pdf

  • Honrubia M (2009) Las micorrizas: una relación planta-hongo que dura más de 400 millones de años. Anales Jard Bot Madrid 66S1:133–144

    Article  Google Scholar 

  • Jamarillo IR (2011) La micorriza arbuscular (MA) centro de la rizosfera: comunidad microbiologica dinamica del suelo. Contactos 81:17–23

    Google Scholar 

  • Ji H, Zhang Y, Bararunyeretse P, Li H (2018) Characterization of microbial communities of soils from gold mine tailings and identification of mercury-resistant strain (en línea). Ecotoxicol Environ Saf 165(30):182–193. https://doi.org/10.1016/j.ecoenv.2018.09.011

    Article  CAS  Google Scholar 

  • Kanwal S, Bano A, Malik AN (2015) Effects of arbuscular mycorrhizal fungi on wheat growth, physiology, nutrition and cadmium uptake under increasing cadmium stress. IJAAR 7:30–42

    Google Scholar 

  • Kazaure MB (2018) Distribution of bacteria in lead contaminated soil in Anka local government area, Zamfara state, Nigeria (en línea). Acta Sci Microbiol 1(7):2581–3226. Disponible en https://actascientific.com/ASMI/pdf/ASMI-01-0086.pdf

    Google Scholar 

  • Khan NT, Jameel N, Khan MJ (2018) A brief overview of contaminated soil remediation methods. BioTechnol Ind J Res 14(4):168

    Google Scholar 

  • Lenntech. (2016) Enfermedades transmitidas por el agua. Retrieved February 16, 2016, from http://www.lenntech.es/procesos/desinfeccion/deseases/enfermedadestransmitidas-por-el-agua.htm

  • Maeir RM, Pepper IL, Gerba CP (2009) Environmental microbiology, 2nd edn. Academic Press. Elsevier, San Diego California, p 585

    Google Scholar 

  • Malekzadeh E, Aliasgharzad N, Majidi J, Aghebati-Maleki L, Abdolalizadeh J (2016) Cd-induced production of glomalin by arbuscular mycorrhizal fungus (Rhizophagus irregularis) as estimated by monoclonal antibody assay. Environ Sci Pollut Res Int 23(20):20711–20718. Epub 2016 Jul 29

    Article  CAS  Google Scholar 

  • Mansouri A, Abbes C, Ben Mouhoub R, Hassine SB, Landoulsi A (2019) Enhancement of mixture pollutant biodegradation efficiency using a bacterial consortium under static magnetic field. PLoS One 14(1). https://doi.org/10.1371/journal.pone.0208431

  • Meeboon N, Leewis MC, Kaewsuwan S, Maneerat S, Leigh MB (2017) Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils. Arch Microbiol 199(6):839–851. https://doi.org/10.1007/s00203-017-1356-3

    Article  CAS  Google Scholar 

  • Muralikrishna, I V.; Manickam, V. (2017) Environmental management: science and engineering for industry (en línea). s.l., s.e. 1–664 p. DOI: https://doi.org/10.1016/B978-0-12-811989-1.00001-4

  • Occhipinti A, Eyassu F, Rahman TJ, Rahman PKSM, Angione C (2018) In silico engineering of pseudomonas metabolism reveals new biomarkers for increased biosurfactant production. PeerJ 6:e6046. https://doi.org/10.7717/peerj.6046

    Article  CAS  Google Scholar 

  • Pajević S, Borišev M, Nikolić N, Arsenov DD, Župunski M (2016) Phytoextraction of heavy metals by fast-growing trees: a review. In: Ansari AA (ed) Phytoremediation. Springer International, Cham

    Google Scholar 

  • Poveda R y Velasteguí R (2013). Evaluación de especies acuáticas flotantes para la fitorremediación de aguas residuales industrial y de uso agrícola previamente caracterizadas en el cantón ambato, provincia de tungurahua. Carrera ingeniería bioquímica, Universidad Técnica de Ambato, Ambato, Ecuador, URL http://repositorio.uta.edu.ec/jspui/handle/123456789/8455i

  • Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia 51:123–130

    Article  CAS  Google Scholar 

  • Rai PK (2016) Biomagnetic Monitoring of Particulate Matter: In the Indo-Burma Hotspot Region (en línea). s.l., s.e. 1–198 p. Disponible en https://www.scopus.com/inward/record.uri?eid=2-s2.0-85014489011&partnerID=40&md5=ca1fcd5eaa99424badbba5f56ebaebf2

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2012) Reviews of Environmental Contamination and Toxicology Volume 218 (en línea). s.l., s.e., vol. 218. doi:https://doi.org/10.1007/978-1-4614-3137-4

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumalating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181. https://doi.org/10.1016/j.plantsci.2010.08.016

    Article  CAS  Google Scholar 

  • Samarghandi MR, Arabestani MR, Zafari D, Rahmani AR, Afkhami A, Godini K (2018) Bioremediation of actual soil samples with high levels of crude oil using a bacterial consortium isolated from two polluted sites: investigation of the survival of the bacteria. Global NEST J 20(2):432–438

    Article  CAS  Google Scholar 

  • Schneider J, Bundschuh J, do Nascimento CWA (2016) Arbuscular mycorrhizal fungi-assisted phytoremediation of a lead-contaminated site. Sci Total Environ 572:86–97

    Article  CAS  Google Scholar 

  • Singh R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc Int Acad Ecol Environ Sci 4(1):1

    Google Scholar 

  • Singh Sidhu GP (2018) Heavy metal toxicity in soils: sources, remediation technologies and challenges. Adv Plants Agric Res 5(1):445–446. https://doi.org/10.15406/apar.2016.05.00166

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, Cambridge

    Google Scholar 

  • Toro M, Gamarra R, López L, Infante C (2017) Arbuscular mycorrhizal fungi and the remediation of soils contaminated with hydrocarbons. In: Anjum N (ed) Chemical pollution control via microorganisms. Nova Science, New York, pp 79–96

    Google Scholar 

  • Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. J Phytology 2(7):16–27

    Google Scholar 

  • Velásquez A (2017) Contaminación de suelos y aguas por hidrocarburos en Colombia. Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental – Volumen 8 Número 1 – enero - junio de 2017 – ISSN 2145–6097

    Google Scholar 

  • Ventorino V, Pascale A, Adamo P, Rocco C, Fiorentino N, Mori M, Faraco V, Pepe O, Fagnano M (2018) Comparative assessment of autochthonous bacterial and fungal communities and microbial biomarkers of polluted agricultural soils of the terra dei Fuochi (en línea). Sci Rep 8(1):1–13. https://doi.org/10.1038/s41598-018-32688-5

    Article  CAS  Google Scholar 

  • Volke-Sepulveda T, Velasco-Trejo JA, de la Rosa Pérez DA (2005) Suelos contaminados por metales y metaloides: muestreo y alternativas para su remediación. Secretaría de Medio Ambiente y Recursos Naturales. Instituto Nacional de Ecología, Ciudad de México, México, p 144

    Google Scholar 

  • Wang J, Wang J, Zhang Z, Li Y, Zhang B, Zhang Z, Zhang G (2016) Cold-adapted bacteria for bioremediation of crude oil-contaminated soil. J Chem Technol Biotechnol 91(8):2286–2297. https://doi.org/10.1002/jctb.4814

    Article  CAS  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for agrgregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Xercavins J, Cayuela D, Cervantes G, Sabater A (2005) Sustainable development. Editions UPC, Catalunya

    Google Scholar 

  • Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H (2018) Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol 9:1–11. https://doi.org/10.3389/fmicb.2018.02885

    Article  Google Scholar 

  • Yuan M et al (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  CAS  Google Scholar 

  • Zafarzadeh A, Rahimzadeh H, Mahvi AH (2018) Health risk assessment of heavy metals in vegetables in an endemic esophageal cancer region in Iran. Health Scope 7(3):e12340

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celia Vargas de la Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landa-Acuña, D., Acosta, R.A.S., Hualpa Cutipa, E., Vargas de la Cruz, C., Luis Alaya, B. (2020). Bioremediation: A Low-Cost and Clean-Green Technology for Environmental Management. In: Shah, M. (eds) Microbial Bioremediation & Biodegradation. Springer, Singapore. https://doi.org/10.1007/978-981-15-1812-6_7

Download citation

Publish with us

Policies and ethics