Skip to main content

Methodology to Ensure the Continuity of the Information Systems Service, Based on the Monitoring of Electrical Energy, Using IoT Technology

  • Chapter
  • First Online:
Book cover Energy Conservation Solutions for Fog-Edge Computing Paradigms

Abstract

In health centers, hospital services are a useful source of information that cannot be interrupted, as they provide necessary clinical information such as results of clinical examinations, results of radiological examinations, search results for available drugs, among other necessary information. In the absence of commercial electrical energy, mechanisms should be considered to ensure the continuity of information services through the use of battery banks, this methodology presents a technique based on IoT techniques, through which the consumption of the package is monitored. of batteries found in the data centers of hospital establishments, to be able to analyze the level of charge and the state of the batteries at all times when the commercial electrical power is active, when the commercial power is cut, the battery bank power, so your tracking on the consumption of the battery Charging is of vital importance to be able to activate the alternative and energy mechanisms such as electric power generating motors, but these motors have an ignition and stabilization time, it is at this time that it is necessary to monitor the use and discharge of energy from the power bank batteries found in data centers, the mechanism to be used for the connection through IoT is based on an ATECC608A development device, which has an ATWINC1510 Wi-Fi connection with an interface developed in LabView, The results demonstrate the use and practicality as most power outages occur at night so data center workers are not at their workplace and remote monitoring of battery banks is very useful in these situations based on IoT technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu G, Wei J, Ye C, Zhong H, Huang T, He H (2012) Specification and monitoring of data-centric temporal properties for service-based systems. J Syst Softw 85(12):2738–2754. https://doi.org/10.1016/j.jss.2012.05.075

    Article  Google Scholar 

  2. Chen M, Gao C, Song M, Chen S, Li D, Liu Q (1 Jan 2020) Internet data centers participating in demand response: a comprehensive review. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.109466

  3. Alipio M, Tiglao NM, Bokhari F, Khalid S (15 Nov 2019) TCP incast solutions in data center networks: a classification and survey. J Netw Comput Appl Academic Press. https://doi.org/10.1016/j.jnca.2019.102421

  4. Dai B, Xu G, Huang B, Qin P, Xu Y (15 Sept 2017). Enabling network innovation in data center networks with software defined networking: a survey. J Netw Comput Appl. Academic Press. https://doi.org/10.1016/j.jnca.2017.07.004

  5. Zhang H, Shao S, Xu H, Zou H, Tian C (2014) Free cooling of data centers: a review. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.04.017

  6. Faiad AA, Hamdan E, Hamad MS, Abdel-Khalik AS, Hamdy RA (1 June 2020) Differential power processing for data centers applications: a comprehensive review. Alexandria Eng J. Elsevier B.V. https://doi.org/10.1016/j.aej.2020.05.002

  7. Liu L, Zhang Q, Zhai Z (John), Yue C, Ma X (1 Nov 2020) State-of-the-art on thermal energy storage technologies in data center. Energ Build. Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2020.110345

  8. Tehrani YH, Atarodi SM (2019) Design & implementation of a high precision & high dynamic range power consumption measurement system for smart energy IoT applications. Meas: J Int Meas Confederation 146:458–466. https://doi.org/10.1016/j.measurement.2019.06.037

  9. Huang P, Copertaro B, Zhang X, Shen J, Löfgren I, Rönnelid M, Fahlen J, Andersson D, Svanfeldt M (15 Jan 2020) A review of data centers as prosumers in district energy systems: renewable energy integration and waste heat reuse for district heating. Appl Energ. Elsevier Ltd. https://doi.org/10.1016/j.apenergy.2019.114109

  10. Shuja J, Gani A, Shamshirband S, Ahmad RW, Bilal K (1 Sept 2016) Sustainable cloud data centers: a survey of enabling techniques and technologies. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.04.034

  11. Rong H, Zhang H, Xiao S, Li C, Hu C (1 May 2016) Optimizing energy consumption for data centers. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.12.283

  12. Oró E, Depoorter V, Garcia A, Salom J (2015) Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.10.035

  13. Uddin M, Darabidarabkhani Y, Shah A, Memon J (3 August 2015) Evaluating power efficient algorithms for efficiency and carbon emissions in cloud data centers: a review. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.07.061

  14. Jin C, Bai X, Yang C, Mao W, Xu X (1 May 2020) A review of power consumption models of servers in data centers. Appl Energ. Elsevier Ltd. https://doi.org/10.1016/j.apenergy.2020.114806

  15. Jin C, Bai X, Yang C, Mao W, Xu X (2020) A review of power consumption models of servers in data centers. Appl Energy 265:114806. https://doi.org/10.1016/j.apenergy.2020.114806

    Article  Google Scholar 

  16. Jin C, Bai X, Yang C (10 Dec 2019) Effects of airflow on the thermal environment and energy efficiency in raised-floor data centers: a review. Sci Total Environ. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.133801

  17. Zhang H, Shao S, Tian C, Zhang K (1 Jan 2018) A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.08.011

  18. Zhan B, Shao S, Zhang H, Tian C (5 Jan 2020) Simulation on vertical microchannel evaporator for rack-backdoor cooling of data center. Appl Therm Eng. Elsevier Ltd. https://doi.org/10.1016/j.applthermaleng.2019.114550

  19. Lu H, Zhang Z, Yang L (15 Nov 2018) A review on airflow distribution and management in data center. Energ Build. Elsevier Ltd. https://doi.org/10.1016/j.enbuild.2018.08.050

  20. Habibi Khalaj A, Halgamuge SK (1 Nov 2017) A review on efficient thermal management of air- and liquid-cooled data centers: from chip to the cooling system. Appl Energ. Elsevier Ltd. https://doi.org/10.1016/j.apenergy.2017.08.037

  21. Ni J, Bai X (1 Jan 2017) A review of air conditioning energy performance in data centers. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2016.09.050

  22. Chu WX, Wang CC (15 April 2019) A review on airflow management in data centers. Appl Energ. Elsevier Ltd. https://doi.org/10.1016/j.apenergy.2019.02.041

  23. Zhang K, Zhang Y, Liu J, Niu X (1 Sept 2018) Recent advancements on thermal management and evaluation for data centers. Appl Therm Eng. Elsevier Ltd. https://doi.org/10.1016/j.applthermaleng.2018.07.004

  24. Fulpagare Y, Bhargav A (2015) Advances in data center thermal management. Renew Sustain Energ Rev. Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.11.056

  25. Gong X, Zhang Z, Gan S, Niu B, Yang L, Xu H, Gao M (15 de junio 2020). Una revisión de las métricas de evaluación del rendimiento térmico en los centros de datos. Edificación y Medio Ambiente. Elsevier Ltd. https://doi.org/10.1016/j.buildenv.2020.106907

  26. Matsui K (2017) Proposal and implementation of real-time certification system for smart home using IoT technology. In: Energy procedia, vol 142. Elsevier Ltd, pp 2027–2034. https://doi.org/10.1016/j.egypro.2017.12.406

  27. Zhang J (2020) Real-time detection of energy consumption of IoT network nodes based on artificial intelligence. Comput Commun 153:188–195. https://doi.org/10.1016/j.comcom.2020.02.015

    Article  Google Scholar 

  28. Zeadally S, Bello O (2019) Harnessing the power of internet of things based connectivity to improve healthcare. Int Things 100074

    Google Scholar 

  29. Hossain MS, Rahman M, Sarker MT, Haque ME, Jahid A (2019) A smart IoT based system for monitoring and controlling the sub-station equipment. Int Things 7:100085

    Google Scholar 

  30. Hasır M, Cekli S, Uzunoğlu CP (2021) Simultaneous remote monitoring of transformers’ ambient parameters by using IoT. Int Things 100390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilver Auccahuasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auccahuasi, W. et al. (2022). Methodology to Ensure the Continuity of the Information Systems Service, Based on the Monitoring of Electrical Energy, Using IoT Technology. In: Tiwari, R., Mittal, M., Goyal, L.M. (eds) Energy Conservation Solutions for Fog-Edge Computing Paradigms. Lecture Notes on Data Engineering and Communications Technologies, vol 74. Springer, Singapore. https://doi.org/10.1007/978-981-16-3448-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3448-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3450-5

  • Online ISBN: 978-981-16-3448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics