Skip to main content

Use of Mine Tailings as a Substrate in Microbial Fuel Cells for Electric Energy Generation

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Clean Energy and Electrical Systems (CEES 2023)

Abstract

In order to find an alternative for the reuse of mining effluents and contribute with eco-friendly technologies that cover the high demand for energy, this research evaluated the use of mine tailings as a substrate for the generation of electrical energy through microbial fuel cells. (MFC). A single chamber microbial fuel cell with air cathode was constructed, using a copper foil as anode electrode and a graphite plate as cathode. For the characterization of the cells, physicochemical parameters such as voltage, electric current, pH, turbidity and electrical conductivity were measured for 30 days and at room temperature (18 ± 2.2 ºC). The voltage, current and turbidity, reached peak values of 0.65 ± 0.02 V, 1.83 ± 0.04 mA and 981.5 ± 13.44 NTU respectively, in addition the mine tailings operated at an acid pH and conductivity values greater than 146 mS/cm. These results demonstrated that it is possible to use mining tailings as a substrate in microbial fuel cells for sustainable electric power generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao M, Shao GK, Huang DD, Lv XX, Guo DS (2017) Synthesis, crystal structures and properties of ferrocenyl bis-amide derivatives yielded via the ugi four-component reaction. Molecules 22(5):737

    Article  Google Scholar 

  2. Ai C, Yan Z, Hou S, et al. (2020) Effective treatment of acid mine drainage with microbial fuel cells: an emphasis on typical energy substrates. Minerals 10(5): 443

    Google Scholar 

  3. Kaushik A, Singh A (2020) Metal removal and recovery using bioelectrochemical technology: the major determinants and opportunities for synchronic wastewater treatment and energy production. J Environ Manage 270:110826

    Article  Google Scholar 

  4. Abdullah N, Yusof N, Lau WJ, Jaafar J, Ismail AF (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76:17–38

    Article  Google Scholar 

  5. Nikhil GN, Chaitanya DK, Srikanth S, Swamy YV, Mohan SV (2018) Applied resistance for power generation and energy distribution in microbial fuel cells with rationale for maximum power point. Chem Eng J 335:267–274

    Article  Google Scholar 

  6. Fadzli FS, Bhawani SA, Adam Mohammad, RE (2021) Microbial fuel cell: recent developments in organic substrate use and bacterial electrode interaction. J Chem 2021 (2021)

    Google Scholar 

  7. Wang L, Wang Y, Ma F, Tankpa V, Bai S, Guo X, Wang X (2019) Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater: a review. Sci Total Environ 668:1298–1309

    Article  Google Scholar 

  8. He L, Du P, Chen Y, Lu H, Cheng X, Chang B, Wang Z (2017) Advances in microbial fuel cells for wastewater treatment. Renew Sustain Energy Rev 71:388–403

    Article  Google Scholar 

  9. Butti SK, Velvizhi G, Sulonen ML, et al. (2018) Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renew Sustain Energy Rev 53:462-476 (2016)

    Google Scholar 

  10. Tharali AD, Sain N, Osborne WJ (2016) Microbial fuel cells in bioelectricity production. Front Life Sci 9(4):252–266

    Article  Google Scholar 

  11. Gul H, Raza W, Lee J, Azam M, Ashraf M, Kim KH (2021) Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere 281:130828

    Article  Google Scholar 

  12. Rojas-Flores S, Benites SM, La Cruz–Noriega D, et al. (2021) Generation Bioelectricity from wastewater using low- cost microbial fuel cells. LACCEI 2021:1–6 (2021).

    Google Scholar 

  13. Flores SR, Nazario-Naveda R, Betines SM, De La Cruz-Noriega M, Cabanillas-Chirinos L, Valdiviezo-Dominguez F (2021) Sugar industry waste for bioelectricity generation. Environ Res Eng Manag 77(3):15–22

    Article  Google Scholar 

  14. Jadhav DA, Ray SG, Ghangrekar MM (2017) Third generation in bio-electrochemical system research–a systematic review on mechanisms for recovery of valuable by-products from wastewater. Renew Sustain Energy Rev 76:1022–1031

    Article  Google Scholar 

  15. Guadarrama-Pérez O, Gutiérrez-Macías T, García-Sánchez L, Guadarrama-Pérez VH, Estrada-Arriaga EB (2019) Recent advances in constructed wetland-microbial fuel cells for simultaneous bioelectricity production and wastewater treatment: a review. Int J Energy Res 43(10):5106–5127

    Article  Google Scholar 

  16. Leiva E, Leiva-Aravena E, Rodríguez C, Serrano J, Vargas I (2018) Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells. Sci Total Environ 645:471–481

    Article  Google Scholar 

  17. Yang N, Zhan G, Li D, Wang X, He X, Liu H (2019) Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell. Chem Eng J 356:506–515

    Article  Google Scholar 

  18. Yaqoob AA, Khatoon A, Mohd Setapar SH, et al. (2020) Outlook on the role of microbial fuel cells in remediation of environmental pollutants with electricity generation. Catalysts 10(8):819

    Google Scholar 

  19. Repuello BC, Ticllausaca AA, Román FT (2020) Generación de energía eléctrica y tratamiento de aguas residuales municipales utilizando celdas de combustible microbiano (MFC) en la ciudad de Huancavelica. South Sustain 1(2):e018–e018

    Google Scholar 

  20. Mukherjee A, Patel V, Shah MT, Jadhav DA, Munshi NS, Chendake AD, Pant D (2022) Effective power management system in stacked microbial fuel cells for onsite applications. J Power Sources 517:230684

    Article  Google Scholar 

  21. Malekmohammadi S, Ahmad Mirbagheri, SA (2021) A review of the operating parameters on the microbial fuel cell for wastewater treatment and electricity generation. Water Sci. Technol 84(6):1309–1323

    Google Scholar 

  22. Joseph L, Jun BM, Flora JR, Park CM, Yoon Y (2019) Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere 229:142–159

    Article  Google Scholar 

  23. Tee PF, Abdullah MO, Tan IA, Amin MA, Nolasco-Hipolito C, Bujang K (2017) Effects of temperature on wastewater treatment in an affordable microbial fuel cell-adsorption hybrid system. J Environ Chem Eng 5(1):178–188

    Article  Google Scholar 

  24. Li J, Li H, Fu Q, Liao Q, Zhu X, Kobayashi H, Ye D (2017) Voltage reversal causes bioanode corrosion in microbial fuel cell stacks. Int J Hydrogen Energy 42(45):27649–27656

    Article  Google Scholar 

  25. Tessema TD, Yemata TA (2021) Experimental dataset on the effect of electron acceptors in energy generation from brewery wastewater via a microbial fuel cell. Data Brief 37:107272

    Article  Google Scholar 

  26. Potrykus S, León-Fernández LF, Nieznański J, Karkosiński D, Fernandez-Morales FJ (2021) The influence of external load on the performance of microbial fuel cells. Energies 14(3):612

    Article  Google Scholar 

  27. Logan BE, Rossi R, Ragab A, Saikaly PE (2019) Electroactive microorganisms in bioelectrochemical systems. Nat Rev Microbiol 17(5):307–319

    Article  Google Scholar 

  28. Koók L, Nemestóthy N, Bélafi-Bakó K, Bakonyi P (2021) The influential role of external electrical load in microbial fuel cells and related improvement strategies: a review. Bioelectrochemistry 140:107749

    Article  Google Scholar 

  29. Rojas-Flores S, De La Cruz-Noriega M, Nazario-Naveda R, Benites SM, Delfín-Narciso D, Rojas-Villacorta W, Romero CV (2022) Bioelectricity through microbial fuel cells using avocado waste. Energy Rep 8:376–382

    Article  Google Scholar 

  30. Segundo RF, Magaly DLCN, Benites SM, et al. (2022) Increase in electrical parameters using sucrose in tomato waste. Fermentation 8(7):335

    Google Scholar 

  31. Arkatkar A, Mungray AK, Sharma P (2019) Effect of microbial growth on internal resistances in MFC: a case study. In: Innovations in Infrastructure, pp 469–479. Springer, Singapore

    Google Scholar 

  32. Rossi R, Logan BE (2020) Impact of external resistance acclimation on charge transfer and diffusion resistance in bench-scale microbial fuel cells. Biores Technol 318:123921

    Article  Google Scholar 

  33. Segundo RF, De La Cruz-Noriega M, Milly Otiniano N, Benites SM, Esparza M, Nazario-Naveda R (2022) Use of onion waste as fuel for the generation of bioelectricity. Molecules 27(3):625

    Article  Google Scholar 

  34. Rojas-Flores S, Nazario-Naveda R, Benites SM, Gallozzo-Cardenas M, Delfín-Narciso D, Díaz F (2022) Use of pineapple waste as fuel in microbial fuel cell for the generation of bioelectricity. Molecules 27(21):7389

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Silva-Palacios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva-Palacios, F. et al. (2023). Use of Mine Tailings as a Substrate in Microbial Fuel Cells for Electric Energy Generation. In: Gaber, H. (eds) Proceedings of the 5th International Conference on Clean Energy and Electrical Systems. CEES 2023. Lecture Notes in Electrical Engineering, vol 1058. Springer, Singapore. https://doi.org/10.1007/978-981-99-3888-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3888-9_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3887-2

  • Online ISBN: 978-981-99-3888-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics