Skip to main content
Log in

Pathways for volume flow and volume regulation in leaky epithelia

  • Cellular Volume- and Osmoregulation
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Continuous pathways must pierce the cell membrane to be used by water during osmotic equilibration between proximal straight tubular cells and the external medium, because a) the water osmotic permeability coefficient of the basolateral plasma membrane,P cbos , is high; b) its activation energy,E a, is as that of free water movement and c) pCMBS inhibits markedly (but reversibly)P cbos and increasesE a to values similar to those observed in lipid bilayers without pores. d) Preliminary measurements ofP d the water diffusive permeability coefficient using NMR indicate thatP cbos /P d is near 4–5. The following two observations indicate that a significant paracellular water flow must exist in leaky epithelia. Namely, a) large extracellular solutes are dragged by water in four leaky epithelia: gall bladder, Necturus proximal tubule, rat proximal tubule andRhodnius malpighian tubule. b) The transcellular water osmotic permeability coefficient is smaller than the transepithelial values available in the rabbit proximal straight tubule. This requires a significant paracellular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andreoli TE, Schafer JA, Troutman SL (1981) Coupling of solute and solvent flows in porous bilayer membranes. J Gen Physiol 57:479–493

    Google Scholar 

  2. Barry PH, Diamond JM (1984) Effects of unstirred layers on membrane phenomena. Physiol Rev 64:763–873

    Google Scholar 

  3. Benz R, Tosteson MT, Schubert D (1984) Formation and properties of tetramers of band 3 protein form human erythrocyte membranes in planar lipid bilayers. Biochim Biophys Acta 775:347–355

    Google Scholar 

  4. Berry CA (1983) Water permeability and pathways in the proximal tubule. Am J Physiol 245:F279-F294

    Google Scholar 

  5. Carpi-Medina P, Lindemann B, González E, Whittembury G (1984) The continuous measurements of tubular volume changes in response to step changes in contraluminal osmolality. Pflügers Arch 400:343–348

    Google Scholar 

  6. Carpi-Medina, P, León V, Linares H, Whittembury G, González E (1984) Permeabilidad acuosa difusional (P d) y osmótica (P os) de la membrana basolateral de túbulos proximales de conejo. Primeras Jornadas Venezol. Nefrol Caracas, p 31

  7. Finkelstein A (1984) Water movement through membrane channels. Curr Top Membr Transport 21:295–308

    Google Scholar 

  8. Froemter E (1972) The route of passive ion movement through the epithelium of Necturus gall bladder. J Membr Biol 8:259–301

    Google Scholar 

  9. González E, Carpi-Medina P, Linares H, Whittembury G (1984) Water osmotic permeability of the apical membrane of proximal straight tubular (PST) cells. Pflügers Arch 402:337–339

    Google Scholar 

  10. Green R, Giebisch G (1984) Luminal hypotonicity as a driving force for fluid absorption from the proximal convoluted tubule of the rat. Am J Physiol 246:F167-F174

    Google Scholar 

  11. Hill AE, Hill BS (1978) Sucrose fluxes and junctional water flow across Necturus gall bladder epithelium. Proc Roy Soc B 200:151–162

    Google Scholar 

  12. Levitt DG (1984) Kinetic of movement in narrow channels. Curr Top Membr Transport 21:181–197

    Google Scholar 

  13. Maddrell SHP (1969) Secretion by the Malpighian tubules of Rhodnius. The movement of ions and water. J Exp Biol 51:71–97

    Google Scholar 

  14. Moura T, Macey RI, Chien DY, Karan D, Santos H (1984) Thermodynamics of all or none water channel closure in red cells. J Membr Biol 8:105–111

    Google Scholar 

  15. Paz-Aliaga A, Linares H, Whittembury G (1983) Flujo de agua por la vía paracellular en tubo de Malpighi. Acta Cientif Venezol 34:suppl 1, 215

    Google Scholar 

  16. Schafer JA (1984) Mechanisms coupling the absorption of solutes and water in the proximal nephron. Kidney Int 25:708–716

    Google Scholar 

  17. Schafer JA, Patlak CS, Troutman SL, Andreoli TE (1978) Volume regulation in the pars recta. Am J Physiol 234:F340-F348

    Google Scholar 

  18. Solomon AK, Chasan G, Dix JA, Lukacovic MF, Toon MR, Verkman AS (1983) Possible relation between anion transport and water flow in red cells. Ann NY Acad Sci 414:97–104

    Google Scholar 

  19. Spring KR, Hope A (1979) Size and shape of the lateral interspaces in a living epithelium. Science 200:54–58

    Google Scholar 

  20. Whittembury G, Carpi-Medina P, González E, Linares H (1984) Effect of para-chloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules. Biochim Biophys Acta 775:365–373

    Google Scholar 

  21. Whittembury G, Hill BS (1982) Fluid reabsorption by Necturus proximal tubule perfused with solutions of normal and reduced osmolarity. Proc Roy Soc B 215:411–431

    Google Scholar 

  22. Whittembury G, Malnic G, Mello-Aires M, Amorena C (1981) Flujo paracelular de agua en túbulo renal proximal de rata. Acta Cientif Venezol 32:(suppl 1) 40

    Google Scholar 

  23. Whittembury G, Biondi AC, Paz-Aliaga A, Linares H, Linares N (1985) Transcellular and paracellular flow of water during secretion in the upper segment of the Malpighian tubule of Rhodnius prolixus: Solvent drag of grades sized molecules. J Exp Biol (submitted)

  24. Whittembury G, Rawlins FA (1971) Evidence of a paracellular pathway for ion flow in the kidney proximal tubule: electron-microscopic demonstration of lanthanum precipitate in the tight junction. Pflügers Arch 330:302–309

    Google Scholar 

  25. Whittembury G, Verde-Martínez C, Linares H, Paz-Aliaga A (1980) Solvent drag of large solutes indicates paracellular water flow in leaky epithelia. Proc Roy Soc B 211:63–81

    Google Scholar 

  26. Windhager EE (1979) Sodium chloride transport. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology, vol 4a. Springer, Berlin Heidelberg New York, pp 143–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittembury, G., Paz-Aliaga, A., Biondi, A. et al. Pathways for volume flow and volume regulation in leaky epithelia. Pflugers Arch. 405 (Suppl 1), S17–S22 (1985). https://doi.org/10.1007/BF00581774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581774

Key words

Navigation