Skip to main content
Log in

Cortical region of interest definition on SPECT brain images using X-ray CT registration

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Summary

We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional (133Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient ≈0.98), and good accuracy in terms of repositioning (≈3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ingvar DH, Risberg J (1967) Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Exp Brain Res 3:195–211

    Google Scholar 

  2. Roland PE, Larsen B (1976) Focal increase of cerebral blood flow during stereognostic testing in man. Arch Neurol 33:551–558

    Google Scholar 

  3. Heller SL, Goodwin PN (1987) SPECT instrumentation: performance, lesion detection, and recent innovations. Semin Nucl Med 17:184–199

    Google Scholar 

  4. Cordes M, Christe W, Henkes H, et al (1990) Focal epilepsies: HM-PAO SPECT compared with CT, MR, and EEG. J Comput Assist Tomogr 14:10–19

    Google Scholar 

  5. Gemmel HG, Sharp PF, Besson JAO, et al (1987) Differential diagnosis in dementia using the cerebral blood flow 99mTc HM-PAO: a SPECT study. J Comput Assist Tomogr 11:398–402

    Google Scholar 

  6. Goldenberg G, Podreka I, Hoell K, Steinert M (1987) Patterns of regional cerebral blood flow related to memorizing of high and low imagery words: an emission computer tomography study. Neuropsychologia 25:473–485

    Google Scholar 

  7. Stephan H, Bauer J, Feistel H, et al (1990) Regional cerebral blood flow during focal seizures of temporal and frontocentral onset. Ann Neurol 27:163–166

    Google Scholar 

  8. Montaldi D, Brooks DN, McColl JH, et al (1990) Measurements of regional cerebral blood flow and cognitive performance in Alzheimer's disease. J Neurol Neurosurg Psychiatry 53:33–38

    Google Scholar 

  9. Lou HC, Henriksen L, Bruhn P (1990) Focal cerebral dysfunction in developmental learning disabilities. Lancet 335:8–11

    Google Scholar 

  10. Seitz RJ, Greitz T, Roland PE, et al (1990) Accuracy and precision of the computerized brain atlas programme for localization and quantification in positron emission tomography. J Cereb Blood Flow Metab 10:443–457

    Google Scholar 

  11. Friston KJ, Passingham RE, Nutt JG, Heather JD, Sawle GV, Frackowiak RS (1989) Localization in PET images: direct fitting of the intercommissural (AC-PC) line. J Cereb Blood Flow Metab 5:690–695

    Google Scholar 

  12. Fox PT, Perlmutter JS, Raichle ME (1985) A stereotactic method of anatomical localisation for positron emission tomography. J Comput Assist Tomogr 9:141–153

    Google Scholar 

  13. Junk I, Moen JG, Hutchins GD, Brown MB, Kuhl D (1990) Correlation methods for the centering, rotation, and alignment of functional brain images. J Nucl Med 31:1220–1226

    Google Scholar 

  14. Talairach J, Szikla G, Tournoux P et al (1967) Atlas d'anatomie stéréotaxique du télencéphale. Masson, Paris

    Google Scholar 

  15. Steinmetz H, Fürst G, Freund H. J. (1989) Cerebral cortical localization: application and validation of the proportional grid System in MR imaging. J Comput Assist Tomogr 13:10–19

    Google Scholar 

  16. Matsui T, Hirano A (1978) An atlas of the human brain for computerized tomography. Igaku-Shoin, New York

    Google Scholar 

  17. Gelbert F, Bergvall U, Salamon G, et al (1985) CT identification of cortical speech areas in the human brain. J Comput Assist Tomogr 10:39–45

    Google Scholar 

  18. Celsis P, Goldman T, Henriksen L, Lassen NA (1981) A method for calculating regional cerebral blood flow from emission computed tomography of inert gas concentrations. J Comput Assist Tomogr 5:641–645

    Google Scholar 

  19. Rezai YK, Kirchner PT, Armstrong C, Ehrhardt JC, Heista D (1988) Validation studies for brain blood flow assessment by radioxenon tomography. J Nucl Med 29:348–355

    Google Scholar 

  20. Stokely EM, Bonte FJ, Devous MD, Arora G (1988) Brain blood flow by radioxenon tomography. J Nucl Med 29:1875–1976

    Google Scholar 

  21. Serra J (1982) Image analysis and mathematical morphology. Academic Press, London

    Google Scholar 

  22. Martinot JL, Allilaire JF, Mazoyer BM, et al (1990) Obsessivecompulsive disorder: a clinical neuropsychological and positron emission tomography study. Acta Psychiatr Scand 82:233–242

    Google Scholar 

  23. Mazziotta JC, Koslow SH (1987) Assessment of goals and obstacles in data acquisition and analysis from emission tomography: report of a series of international workshops. J Cereb Blood Flow Metab 7:S1-S31

    Google Scholar 

  24. Tzourio N, Mazoyer BM, Raynaud C, Lorre JP, Syrota A (1989) Positioning of cortical regions of interest on SPECT images: a critical study of the isocontour method. J Nucl Med 30:877

    Google Scholar 

  25. Geschwind N, Levitsky W (1968) Human brain left-right asymmetries in temporal speech region. Science 161:186–187

    Google Scholar 

  26. Mintum MA, Fox PT, Raichle ME (1989) A highly accurate method of localising regions of neuronal activation in the human brain with positron emission tomography. J Cereb Blood Flow metab 9:96–103

    Google Scholar 

  27. Correira A (1990) A Registration of Nuclear medicine images. J Nucl Med 31:1227–1229

    Google Scholar 

  28. Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen C. T (1989) Accurate three-dimensional registration of CT, PET, and/or MR Images of the brain. J Comput Assist Tomogr 13:20–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzourio, N., Joliot, M., Mazoyer, B.M. et al. Cortical region of interest definition on SPECT brain images using X-ray CT registration. Neuroradiology 34, 510–516 (1992). https://doi.org/10.1007/BF00598963

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00598963

Key words

Navigation