Skip to main content
Log in

Bi- and multivariate analyses of diallel crosses: A tool for the genetic dissection of neurobehavioral phenotypes

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The genetic-correlational approach provides a very powerful tool for the analysis of causal relationships between phenotypes. It appears to be particularly appropriate for investigating the functional organization of behavior and/or of causal relationships between brain and behavior. A method for the bivariate analysis of diallel crosses that permits the estimation of correlations due to environmental effects, additive-genetic effects, and/or dominance deviations is described, together with a worked-out example stemming from a five times replicated 4×4 diallel cross between inbred mouse strains. The phenotypes chosen to illustrate the analysis were locomotor activity and rearing frequency in an open field. Large, positive additive-genetic and dominance correlations between these two phenotypes were obtained. This finding was replicated in another, independently executed, diallel cross.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Broadhurst, P. L., and Jinks, J. L. (1974). What genetical architecture can tell us about the natural selection of behavioural traits. In van Abeelen, J. H. F. (ed.),The Genetics of Behaviour, North-Holland, Amsterdam, pp. 43–63.

    Google Scholar 

  • Carey, G. (1988). Inference about genetic correlations,Behav. Genet. 18:329–338.

    Google Scholar 

  • Carson, H. L. (1987). The genetic system, the deme, and the origin of species.Annu. Rev. Genet. 21:405–423.

    Google Scholar 

  • Cheverud, J. M. (1988). A comparison of genetic and phenotypic correlations.Evolution 42:958–968.

    Google Scholar 

  • Crusio, W. E. (1984).Olfaction and Behavioral Responses to Novelty in Mice: A Quantitative-Genetic Analysis, Ph.D. thesis, Nijmegen, The Netherlands.

  • Crusio, W. E. (1985). A new method for testing the assumptions underlying diallel-cross analyses.Behav. Genet. 15:589 (abstr.).

    Google Scholar 

  • Crusio, W. E. (1987). A note on the analysis of reciprocal effects in diallel crosses.J. Genet. 66:177–185.

    Google Scholar 

  • Crusio, W. E. (1990). HOMAL: A computer program for selecting adequate data transformations.J. Hered. 81:173.

    Google Scholar 

  • Crusio, W. E. (1992a). Quantitative Genetics. In Goldowitz, D., Wahlsten, D., and Wimer, R. (eds.),Techniques for the Genetic Analysis of Brain and Behavior: Focus on the Mouse. Techniques in the Behavioral and Neural Sciences, Vol. 8, Elsevier, Amsterdam, pp. 231–250.

    Google Scholar 

  • Crusio, W. E. (1992b). Multivariate quantitative-genetic analysis of two-way active avoidance learning, locomotor activity, and hippocampal mossy fibers in mice.Behav. Genet. 22:718(abstr.).

    Google Scholar 

  • Crusio, W. E., and van Abeelen, J. H. F. (1986). The genetic architecture of behavioural responses to novelty in mice.Heredity 56:55–63.

    Google Scholar 

  • Crusio, W. E., Kerbusch, J. M. L., and van Abeelen, J. H. F. (1984). The replicated diallel cross: A generalized method of analysis.Behav. Genet. 14:81–104.

    Google Scholar 

  • Crusio, W. E., Schwegler, H., and van Abeelen, J. H. F. (1989a). Behavioral responses to novelty and structural variation of the hippocampus in mice. II. Multivariate genetic analysis.Behav. Brain Res. 32:81–88.

    Google Scholar 

  • Crusio, W. E., Schwegler, H., Brust, I., and van Abeelen, J. H. F. (1989b). Genetic selection for novelty-induced rearing behavior in mice produces changes in hippocampal mossy fiber distributions.J. Neurogenet. 5:87–93.

    Google Scholar 

  • Crusio, W. E., Schwegler, H., and van Abeelen, J. H. F. (1991). Behavioural and neuroanatomical divergence between two sublines of C57BL/6J inbred mice.Behav. Brain Res. 42:93–97.

    Google Scholar 

  • DeFries, J. C., Kuse, A. R., and Vandenberg, S. G. (1979). Genetic correlations, environmental correlations, and behavior. In Royce, J. R., and Mos, L. P. (eds.),Theoretical Advances in Behavior Genetics, Sijthoff & Noordhoff, Alphen aan den Rijn, pp. 389–417.

    Google Scholar 

  • Fulker, D. W., Wilcock, J., and Broadhurst, P. L. (1972). Studies in genotype-environment interaction. I. Methodology and preliminary multivariate analysis of a diallel cross of eight strains of rat.Behav. Genet. 2:261–287.

    Google Scholar 

  • Gerlai, R., Crusio, W. E., and Csányi, V. (1990). Inheritance of species-specific behaviors in the paradise fish (Macropodus opercularis): A diallel study.Behav. Genet. 20:487–498.

    Google Scholar 

  • Hayman, B. I. (1954a). The analysis of variance of diallel tables.Biometrics 10:235–244.

    Google Scholar 

  • Hayman, B. I. (1954b). The theory and analysis of diallel crosses.Genetics 39:789–809.

    Google Scholar 

  • Hayman, B. I. (1960). The theory and analysis of diallel crosses. III.Genetics 45:155–172.

    Google Scholar 

  • Hegmann, J. P., and Possidente, B. (1989). Estimating genetic correlations from inbred strains.Behav. Genet. 11:103–114.

    Google Scholar 

  • Henderson, N. D. (1989). Genetic analysis of an avoidance-avoidance response in Mus domesticus.Behav. Genet. 19:387–407.

    Google Scholar 

  • Houle, D. (1991). Genetic covariance of fitness correlates: What genetic correlations are made of and why it matters.Evolution 45:630–648.

    Google Scholar 

  • Jinks, J. L., and Hayman, B. I. (1953). The analysis of diallel crosses.Maize Genet. News Lett. 27:48–54.

    Google Scholar 

  • Kerbusch, J. M. L., van der Staay, F. J., and Hendriks, N. (1981). A searching procedure for transformations and models in a classical Mendelian cross breeding study.Behav. Genet. 11:239–254.

    Google Scholar 

  • Kuehl, R. O., Rawlings, J. O., and Cockerham, C. C. (1968). Reference populations for diallel experiments.Biometrics 24:881–901.

    Google Scholar 

  • Mather, K. and Jinks, J. L. (1982).Biometrical Genetics, 3rd ed., Chapman and Hall, London.

    Google Scholar 

  • Moran, P. A. P. (1971). Estimating structural and functional relationships.J. Multivar. Anal. 1:232–255.

    Google Scholar 

  • Nei, M. (1960). Studies on the application of biometrical genetics to plant breeding.Mem. Coll. Agr. Kyoto Univ. 82:1–100.

    Google Scholar 

  • Sulzbach, D. S., and Lynch, C. B. (1984). Quantitative genetic analysis of temperature regulation inMus musculus. III. Diallel analysis of correlations between traits.Evolution 38:541–552.

    Google Scholar 

  • van Abeelen, J. H. F. (1979). Ethology and the genetic foundations of animal behavior. In Royce, J. R., and Mos, L. P. (eds.),Theoretical Advances in Behavior Genetics, Sijthoff and Noordhoff, Alphen aan den Rijn, pp. 101–112.

    Google Scholar 

  • van Abeelen, J. H. F. (1989). Genetic control of hippocampal cholinergic and dynorphinergic mechanisms regulating novelty-induced exploratory behavior in house mice.Experientia 45:839–845.

    Google Scholar 

  • van Daal, J. H. H. M., Herbergs, P. J., Crusio, W. E., Schwegler, H., Jenks, B. G., Lemmens, W. A. J. G., and van Abeelen, J. H. F. (1991a). A genetic-correlational study of hippocampal structural variation and variation in exploratory activities of mice.Behav. Brain Res. 43:57–64.

    Google Scholar 

  • van Daal, J. H. H. M., Jenks, B. G., Crusio, W. E., Lemmens, W. A. J. G., and van Abeelen, J. H. F. (1991b). A genetic-correlational study of hippocampal neurochemical variation and variation in exploratory activities of mice.Behav. Brain Res. 43:65–72.

    Google Scholar 

  • Walters, D. E., and Gale, J. S. (1977). A note on the Hayman analysis of variance for a full diallel table.Heredity 38:401–407.

    Google Scholar 

  • Wearden, S. (1964). Alternative analyses of the diallel cross.Heredity 19:669–680.

    Google Scholar 

  • Wright, A. J. (1985). Diallel designs, analyses, and reference populations.Heredity 54:307–311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crusio, W.E. Bi- and multivariate analyses of diallel crosses: A tool for the genetic dissection of neurobehavioral phenotypes. Behav Genet 23, 59–67 (1993). https://doi.org/10.1007/BF01067554

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01067554

Key Words

Navigation