Skip to main content
Log in

Rapid measurement of regional cerebral blood flow in the baboon using15O-labelled water and dynamic positron emission tomography

  • Physiological Measurement
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The sensitivity and reproducibility of rapid measurements of regional cerebral flow (rCBF) using a bolus injection of H2 15O and dynamic positron emission tomography (PET) were investigated in anaesthetised baboons. The cerebrovascular reactivity to changes in arterial pCO2 was used as an experimental support. PET data were acquired over 4 min following a single bolus intravenous injection of H2 15O, while arterial blood was withdrawn for continuous activity counting. Images were reconstructed with a dynamic sequence of 45×2s+15×10s, including a correction for decay. Regional values of CBF were derived from non-linear least-squares fits of the time activity curves using a four-parameter two-compartment model. The results obtained with a four-parameter fitting method were compared with those obtained with two other rapid estimation methods, first fitting two parameters only, CBF and partition coefficient (p), and secondly autoradiography (with p fixed at 0·95 ml brain ml blood−1). Twelve regions of interest were analysed. The values for the basal CBF obtained from 13 measurements in two baboons were close to published values obtained with other techniques. Reproducibility checks showed a mean variation of 9·7 per cent. The CBF measurements performed in hypercapnic conditions gave results similar to published data in other animal species, showing a 4·5±0·9 per cent increase in CBF per mm Hg paCO2. The results obtained with the three estimation techniques were closely correlated. The dynamic bolus H2 15O method appeared to be suitable for high blood flow measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpert, N. M., Eriksson, L., Chang, J. Y., Bergstrom, M., Litton, J. E., Correia, J. A., Bohm, C., Ackerman, R. H. andTaveras, J. M. (1984) Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography.J. Cereb. Blood Flow Metabol.,4, 28–34.

    Google Scholar 

  • Budinger, T. F., Huesman, R. H., Knittel, B. L., Twitchell, J. A., Brennan, K. M. andYano, Y. (1984) Myocardial perfusion by dynamic positron emission tomography using15O water.J. Nucl. Med.,25, P69.

    Google Scholar 

  • Clark, J. C. andBuckingham, P. D. (1975)Short-lived radioactive gases for clinical use. Butterworths, London, 150–157.

    Google Scholar 

  • Depresseux, J. C., Cheslet, J. P. andFranck, G. (1983) An original method for the concomitant tomographic assessment of cerebral blood flow oxygen extraction rate, blood volume, and exchangeable water volume in man.J. Cereb. Blood Flow Metabol.,3, S152.

    Google Scholar 

  • Eichling, J. O., Raichle, M. E., Grubb, R. L. andTer-Pogossian, M. M. (1974) Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey.Circ. Res.,35, 358–364.

    Google Scholar 

  • Eklöf, B., Lassen, N. A., Nilsson, L., Norberg, K., Siesjö, B. K. andTorlöf, P. (1974) Regional cerebral blood flow in rat measured by the tissue sampling technique, a critical evaluation using four indicators14C-iodoantipyrine,14C-ethanol,3H-water and133-Xenon.Acta Physiol. Scand.,91, 1–10.

    Article  Google Scholar 

  • Fitch, W., MacKenzie, E. T. andHarper, A. M. (1975) Effects of decreasing arterial blood pressure on cerebral blood flow in the baboon.Circ. Res.,37, 550–557.

    Google Scholar 

  • Frackowiak, R. S. J., Lenzi, G. L., Jones, T. andHeather, J. D. (1980) The quantitative measurement of regional cerebral blood flow and oxygen metabolism in man, using oxygen-15 nad positron emission topography: theory, procedure and normal values.J. Comput. Assist. Tomogr.,4, 727–736.

    Google Scholar 

  • Gambhir, S. S., Huang, S. C., Hawkins, R. A. andPhelps, M. E. (1987) A study fo the single compartment tracer kinetic model for the measurement of local cerebral blood flow using15O-water and positron emission tomography.J. Cereb. Blood Flow Metabol.,7, 13–20.

    Google Scholar 

  • Ginsberg, M. D., Lockwood, A. H., Busto, R., Finn, R. D., Butler, C. M., Cendan, I. E. andGoddard, J. (1982) A simplified ‘in vivo’ autoradiographic strategy for the determination of regional cerebral blood flow by positron emission tomography: theoretical considerations and validation studies in the rat.,2, 89–98.

    Google Scholar 

  • Harper, A. M. andMacKenzie, E. T. (1977) Cerebral circulatory and metabolic effects of hydroxytryptamine in anaesthetized baboons.J. Physiol.,271, 721–733.

    Google Scholar 

  • Herscovitch, P., Markham, J. andRaichle, M. E. (1983) Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis.J. Nucl. Med.,24, 782–789.

    Google Scholar 

  • Herscovitch, P. andRaichle, M. E. (1985) What is the correct value for the brain-blood partition coefficient for water?J. Cereb. Blood Flow Metabol.,5, 65–69.

    Google Scholar 

  • Herscovitch, P., Raichle, M. E., Kilbourn, M. R. andWelch, M. J. (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol.,7, 527–542.

    Google Scholar 

  • Huang, S. C., Carson, R. E. andPhelps, M. E. (1982) Measurement of local blood flow and distribution volume with short-lived isotopes: a general input technique.,2, 99–108.

    Google Scholar 

  • Huang, S. C., Carson, R. E., Hoffman, E. J., Carson, J., MacDonald, N., Barrio, J. R. andPhelps, M. E. (1983) Quantitative measurement of local cerebral blood flow in humans by position computed tomography and15O-water.,3, 141–153.

    Google Scholar 

  • Hutchins, G. D., Hichwa, R. D. andKoeppe, R. A. (1986) A continuous flow input function detector for H2 15O blood flow studies in positron emission tomography.IEEE Trans.,NS-33, 546–549.

    Google Scholar 

  • Iida, H., Kanno, I., Minra, S., Murakami, M., Takahashi, K. andUemura, K. (1986) Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography, with respect to the dispersion of the input function.J. Cereb. Blood Flow Metabol.,6, 536–545.

    Google Scholar 

  • Iida, H., Higano, S., Tomura, N., Shishido, F., Kanno, I., Miura, S., Murakami, M., Takahashi, K., Sasaki, H. andUemura, K. (1988) Evaluation of regional differences of tracer appearance time in cerebral tissues using [15O]water and dynamic positron emission tomography.,8, 285–288.

    Google Scholar 

  • Iida, H., Kanno, I., Miura, S., Matsutaro, M., Takahashi, K. andUemura, K. (1989) A determination of the regional brain/blood partition coefficient of water using dynamic positron emission tomography.,9, 874–885.

    Google Scholar 

  • Kety, S. S. (1960) Measurement of local blood flow by the exchange of an inert diffusible substance.Methods in Med. Res.,8, 228–236.

    Google Scholar 

  • Koeppe, R. A., Holden, J. E. andIp, W. R. (1985) Performance comparison of parameter estimation techniques for the quantitation of local cerebral blood flow by dynamic positron computed tomography.J. Cereb. Blood Flow Metabol.,5, 224–234.

    Google Scholar 

  • Lacombe, P., Meric, P. andSeylaz, J. (1980) Validity of cerebral blood flow measurements obtained with quantitative tracer techniques.Brain Res. Rev.,2, 105–169.

    Article  Google Scholar 

  • Lammertsma, A. A., Frackowiak, R. S. J., Hoffman, J. M., Huang, S. C., Weinberg, I. N. andDahlbom, M. (1989) The C15O2 build-up technique to measure regional cerebral blood flow and volume of distribution of water.J. Cereb. Blood Flow Metabol.,9, 460–461.

    Google Scholar 

  • Lammertsma, A. A., Cunningham, V. J., Deiber, M. P., Heather, J. D., Bloomfield, P. M., Nutt, J., Frackowiak, R. S. J. andJones, T. (1990) Combination of dynamic and integral methods for generating reproducible functional CBF images.,10, 675–686.

    Google Scholar 

  • NIH (1985)Guide for the care and use of laboratory animals. DHEW publication (NIH) 85-23, revised 1985, US National Institutes of Health.

  • Pasztor, E., Symon, L., Dorsh, N. W. C. andBranston, N. M. (1973) The hydrogen clearance method in assessment of blood flow in cortex, white matter and deep nuclei of baboons.Stroke,4, 556–567.

    Google Scholar 

  • Pinard, E., Mazoyer, B., Verrey, B., Pappata, S., Crouzel, C., Yamaguchi, T., Joliot, M. andSyrota, A. (1991) Measurement of rCBF with intravenous H2 15O bolus and PET: experimental validation in baboons (abstract).J. Cereb. Blood Flow Metabol.,11, Suppl. 2, S573.

    Google Scholar 

  • Raichle, M. E., Martin, W. R. W., Herscovitch, P., Mintun, M. A. andMarkham, J. (1983) Brain blood flow measured with intravenous H2 15O. II. Implementation and validation.J. Nucl. Med.,24, 790–798.

    Google Scholar 

  • Randall, L. O. (1938) Chemical topography of the brain.J. Biol. Chem.,124, 481–488.

    Google Scholar 

  • Rhodes, C. G., Lenzi, G. L., Frackowiak, R. S., Jones, T. andPozzilli, C. (1981) Measurement of CBF and CMRO2 using the continuous inhalation of C15O2 and15O. Experimental validation using CO2 reactivity in the anaesthetized dog.J. Neurol. Sci.,50, 381–389.

    Article  Google Scholar 

  • Riche, D., Hantraye, P., Guibert, B., Naquet, R., Loc'h, C., Mazière, B. andMazière, M. (1988) Anatomical atlas of the baboon's brain in the orbito-meatal plane used in experimental positron emission tomography.Brain Res. Bull.,20, 283–301.

    Article  Google Scholar 

  • Soussaline, F., Verrey, B., Comar, D., Campagnolo, R., Bouvier, A. andLecomte, J. L. (1984) Physical characterisation and preliminary results of a PET system using time-of-flight for quantitative studies. InProceedings of international symposium on radioactive isotope in clinic and research.Hofer, H., andBergman, H. (Eds.), Gasteiner Int. Symp., (Verlag, H. Egerman, Vienna), 645–654.

    Google Scholar 

  • Steinling, M., Baron, J. C., Maziere, B., Lasjaunias, P., Loc'h, C., Cabanis, E. A. andGuillon, B. (1985) Tomographic measurement of cerebral blood flow by the68Ga-labelled-microsphere and continuous-C15O2-inhalation methods.Eur. J. Nucl. Med.,11, 29–32.

    Article  Google Scholar 

  • Stewart-Wallace, A. M. (1939) A biochemical study of cerebral tissue and of the changes in cerebral oedema.Brain,62, 426–438.

    Google Scholar 

  • Tuor, U. II, Fitch, W., Graham, D. I. andMendelow, A. D. (1986) Comparison of quantitative autoradiographic and Xenon-133 clearance methods: correlation of gray and white matter cerebral blood flow with compartmental blood flow indices.J. Cereb. Blood Flow Metabol. 6, 481–485.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinard, E., Mazoyer, B., Verrey, B. et al. Rapid measurement of regional cerebral blood flow in the baboon using15O-labelled water and dynamic positron emission tomography. Med. Biol. Eng. Comput. 31, 495–502 (1993). https://doi.org/10.1007/BF02441985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02441985

Keywords

Navigation