Skip to main content
Log in

Assessing the effects of low boron diets on embryonic and fetal development in rodents using in vitro and in vivo model systems

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To date, boron (B) essentiality has not been conclusively shown in mammals. This article summarizes the results of a series of in vitro and in vivo experiments designed to investigate the role of B in mammalian reproduction. In the first study, rat dams were fed either a low (0.04 μg B/g) or an adequate (2.00 μg B/g) B diet for 6 wk before breeding and through pregnancy; reproductive outcome was monitored on gestation day 20. Although low dietary B significantly lowered maternal blood, liver, and bone B concentrations, it had no marked effects on fetal growth or development. The goal of the second study was to assess the effects of B on the in vitro development of rat postimplantation embryos. Day 10 embryos collected from dams fed either the low or adequate B diets for at least 12 wk were cultured in serum collected from male rats exposed to one of the two dietary B treatments. Dams fed the low B diet had a significantly reduced number of implantation sites compared to dams fed the B-adequate diet. However, embryonic growth in vitro was not affected by B treatment. The aim of study 3 was to define the limits of boric acid (BA) toxicity on mouse preimplantation development in vitro. Two-cell mouse embryos were cultured in media containing graded levels of BA (from 6 to 10,000 μM). Impaired embryonic differentiation and proliferation were observed only when embryos were exposed to high levels of BA (>2000 μM), reflecting a very low level of toxicity of BA on early mouse embryonic development. Study 4 tested the effects of low (0.04 μg B/g) and adequate (2.00 μg B/g) dietary B on the in vitro development of mouse preimplantation embryos. Two-cell embryos obtained from the dams were cultured in vitro for 72 h. Maternal exposure to the low B diet for 10, 12, and 16 wk was associated with a reduction in blastocyst formation, a reduction in blastocyst cell number, and an increased number of degenerates. Collectively, these studies support the concept that B deficiency impairs early embryonic development in rodents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Goldbach, A critical review on current hypotheses concerning the role of boron in higher plants: suggestions for further research and methodological requirements,J. Trace Microprobe Technol. 15, 51–91 (1997).

    CAS  Google Scholar 

  2. W. D. Loomis and R. W. Durst, Chemistry and biology of boron,BioFactors 3, 229–239 (1992).

    PubMed  CAS  Google Scholar 

  3. C.D. Eckhert, Boron stimulated embryonic growth in rainbow trout is not a result of antimicrobial action,FASEB J. 12, A205 (1998).

    Google Scholar 

  4. R. I. Rowe and C. E. Eckhert, Boron is essential for zebrafish embryogenesis,FASEB J. 12, A205 (1998).

    Google Scholar 

  5. D. J. Fort, T. L. Propst, T. Schetter, and E. L. Stover, Adverse developmental and reproductive effects of insufficient boron in xenopus: building a case for nutritional essentiality,FASEB J. 12, A205 (1998).

    Google Scholar 

  6. N. King, T. W. Odom, H. W. Sampson, and S. L. Pardue, In ovo administration of boron alters bone mineralization of the chicken embryo,Biol. Trace Element Res. 30, 47–58 (1991).

    Article  CAS  Google Scholar 

  7. T. J. Flynn, Teratological research using in vitro systems: Mammalian whole embryo culture,Environ. Health Perspect. 72, 203–210 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. L. A. Hanna, J. M. Peters, L. M. Wiley, M. S. Clegg, and C. L. Keen, Comparative effects of essential and nonessential metals on preimplantation mouse embryo development in vitro,Toxicology 116, 123–131 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. J. M. Peters, L. M. Wiley, S. Zidenberg-Cherr, and C. L. Keen, Influence of short-term maternal zinc deficiency on the in vitro development of preimplantation mouse embryos,P.S.E.B.M. 198, 561–568 (1991).

    CAS  Google Scholar 

  10. L. M. Wiley and R. A. Pedersen, Morphology of mouse egg cylinder development in vitro: a light and electron microscopic study,J. Exp. Zool. 200, 389–402 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. L. A. Hanna, M. S. Clegg, L. M. Wiley, and C. L. Keen, Peri-implantation mouse embryos grown in zinc deficient medium demonstrate abnormal development,Teratology 54, A54 (1997).

    Google Scholar 

  12. D. A. T. New, P. T. Coppola, and D. L. Cockroft, Comparison of growth in vitro and in vivo of post-implantation rat embryos,J. Embryol. Exp. Morphol. 36, 133–144 (1976).

    PubMed  CAS  Google Scholar 

  13. D. L. Cockroft, Dissection and culture of postimplantation embryos, inPostimplantation Mammalian Embryos: A Practical Approach, A. J. Copp and D. L. Cockroft, eds., IRL, Oxford, pp. 15–40 (1990).

    Google Scholar 

  14. T. W. Sadler, Culture of early somite mouse embryos during organogenesis,J. Embryol. Exp. Morphol. 49, 17–25 (1979).

    PubMed  CAS  Google Scholar 

  15. N. A. Brown and S. Fabro, Quantitation of rat embryonic development in vitro: a morphological scoring system,Teratology 24, 65–78 (1981).

    Article  PubMed  CAS  Google Scholar 

  16. C. D. Hunt, Dietary boron deficiency and supplementation, inTrace Elements in Laboratory Rodents, R. R. Watson, ed., CRC Lewis, Boca Raton, pp. 229–254 (1996).

    Google Scholar 

  17. MARTA/MTA, Mid-Atlantic Reproductive Toxicology Association,(MARTA)/Midwestern Teratology Association (MTA) Glossary and Thesaurus of Fetal/Neonatal Alterations (1996).

  18. M. J. McLeod, Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S,Teratology 22, 299–301 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. R. Rugh,The Mouse: Its Reproduction and Development, Burgess Publishers, pp. 219–226 (1968).

  20. C. J. Price, P. L. Strong, M. C. Marr, C. B. Myers, and F. J. Murray, Developmental toxicology NOAEL and postnatal recovery in rats fed boric acid during gestation,Fundam. Appl. Toxicol. 32, 179–193 (1996).

    Article  PubMed  CAS  Google Scholar 

  21. P. A. Fail, R. E. Chapin, C. J. Price, and J. J. Heindel, General, reproductive, developmental, and endocrine toxicity of boronated compounds,Reprod. Toxicol. 12, 1–18 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. J. J. Heindel, C. J. Price, E. A. Field, M. C. Marr, C. B. Myers, R. E. Morrissey, et al., Developmental toxicology of boric acid in mice and rats,Fundam. Appl. Toxicol. 18, 266–277 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. J. J. Heindel, C. J. Price, and B. A. Schwetz, The developmental toxicology of boric acid in mice, rats, and rabbits,Environ. Health Perspect. 102 (Suppl. 7), 107–112 (1994).

    PubMed  CAS  Google Scholar 

  24. K. H. Beyer, W. F. Bergfeld, W. O. Berndt, R. K. Boutwell, W W Carlton, D. K. Hoffman, et al., Final report on the safety assessment of sodium borate and boric acid,J. Am. Col. Toxicol. 2, 87–125 (1983).

    Article  CAS  Google Scholar 

  25. A. K. Tarkowski, An air drying method for chromosome preparation from mouse eggs,Cytogenetics 5, 394–400 (1966).

    Article  Google Scholar 

  26. M. G. Naghii and S. Samman, The role of boron in nutrition and metabolism,Prog. Food Nutr. Sci. 17, 331–349 (1993).

    PubMed  CAS  Google Scholar 

  27. R. M. Schultz, Regulation of zygotic gene activation in the mouse,BioEssays 15, 531–538 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. B. Hogan, R. Beddington, F. Costanitini, and E. Lacy,Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1994).

    Google Scholar 

  29. H. J. Leese, Metabolism of the preimplantation mammalian embryo,Oxford Rev. Reprod. Biol. 13, 35–72 (1991).

    CAS  Google Scholar 

  30. W. W. Ku and R. E. Chapin, Mechanism of the testicular toxicity of boric acid in rats: In vivo and in vitro studies,Environ. Health Perspect. 102 (Suppl. 7), 99–105 (1994).

    PubMed  CAS  Google Scholar 

  31. P. P. Power and W. G. Woods, The chemistry of boron and its speciation in plants,Plant and Soil 193, 1–13 (1997).

    Article  CAS  Google Scholar 

  32. W. G. Woods, Review of possible boron speciation relating to its essentiality,J. Trace Element Exp. Med. 9, 253–163 (1996).

    Google Scholar 

  33. S. A. Hubbard and F. M. Sullivan, Toxicological effects of inorganic boron compounds in animals: a review of the literature,J. Trace Element Exp. Med. 9, 165–173 (1996).

    Article  CAS  Google Scholar 

  34. S. Eisenhut, K. G. Heumann, and A. Vengosh, Determination of boron isotopic variations in aquatic systems with negative thermal ionization mass spectrometry as a tracer for anthropogenic influences,Fresenius J. Anal. Chem. 354, 903–909 (1996).

    CAS  Google Scholar 

  35. R. F. Moseman, Chemical disposition of boron in animals and humans,Environ. Health Perspect. 102 (Suppl 7), 113–117 (1994).

    PubMed  CAS  Google Scholar 

  36. A. J. Parr and B. C. Loughman, Boron and membrane function in plants, inMetals and Micronutrients. Uptake and Utilization by Plants, D. A. Robb and W. S. Pierpoint, eds., Academic, New York, pp. 87–107 (1983).

    Chapter  Google Scholar 

  37. K. Lawrence, P. Bhalla, and P. C. Misra, Changes in NAD(P)H dependent redox activities in plasmalemma-enriched vesicles isolated from boron and zinc-deficient chick pea roots,J. Plant. Physiol. 146, 652–657 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanoue, L., Taubeneck, M.W., Muniz, J. et al. Assessing the effects of low boron diets on embryonic and fetal development in rodents using in vitro and in vivo model systems. Biol Trace Elem Res 66, 271–298 (1998). https://doi.org/10.1007/BF02783143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02783143

Index entries

Navigation