Skip to main content
Log in

Douleurs neuropathiques et inflammatoires: modèles animaux et rôles fonctionnels des neuropeptides

  • Published:
Douleur et Analgésie

Résumé

Les douleurs chroniques, d’origine inflammatoire ou neuropathique, s’accompagnent de modifications cellulaires responsables d’une sensibilisation persistante et handicapante. L’étude de ces phénomènes de plasticité nécessite de disposer de modèles animaux fiables. De nombreux modèles existent qui ne font chacun que reproduire certains des symptômes douloureux. Leur choix dépend donc des pathologies étudiées. L’apparition de modèles génétiquement modifiés avait fait naître de grands espoirs mais les phénotypes apparents de ces animaux se révèlent souvent contradictoires, et difficiles à interpréter.

Une composante importante de la plasticité associée à la sensibilisation douloureuse concerne le contenu neurochimique des cellules localisées dans les ganglions rachidiens ou la corne dorsale de la moelle épinière. Cette plasticité neurochimique est illustrée par les variations d’expression de deux neuropeptides, la galanine et la cholécystokinine, ainsi que de leurs récepteurs. Au niveau du premier relais sensoriel, la galanine exercerait un effet essentiellement antinociceptif, à fortes doses, en conditions neuropathiques via son récepteur R1. A l’inverse, la cholécystokinine jouerait un rôle pronociceptif dans les neurones spinaux en s’opposant à l’action des opiacés endogènes via le récepteur CCK2.

La connaissance des mécanismes d’action des messagers est nécessaire à l’élaboration de traitements thérapeutiques innovants. Parmi les messagers chimiques impliqués dans la transmission douloureuse, les neuropeptides représentent une cible thérapeutique de choix en raison de leur caractère modulateur et de leur forte plasticité d’expression. Néanmoins, le développement d’analgésiques dérivés d’agonistes ou d’antagonistes de ces peptides nécessite encore de parfaire la connaissance de leurs mécanismes d’action et de leurs interactions et ces progrès requièrent l’utilisation de modèles animaux pertinents.

Summary

Chronic pain is associated with plastic changes responsible from a persitent sensitization in the spinal cords. The studies of these changes have benefit substantially from the development of experimental animal models. If genetically modified animals have carried a lot of new perspective and hopes, their practical use is difficult due to the important phenotypic variability seen amongst them. However, an important aspect of central sensitization is linked with the changes of expression of neuropeptide such as galanin and cholecystokinin and their receptors. In the dorsal horn, galanin has analgesic effects trough its receptor R1. Conversly, cholecystokinin induces pain via an inhibition of endogenous opioïds through the CCK2 receptor.

Future prospect in analgesic drugs requires a good knowledge about the biochemical cascades involved in the transmission of pain. Amongst these, neuropeptides are good candidate targets because they have a strong analgesic potential, and their expression is highly modulated in persistent pain syndromes. The development of this line of research is still pending on the use of appropriate animal models as well as a better knowledge about their mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Bibliographie

  1. Wall PD, Gutnick M. Properties of afferent nerve impulses originating from a neuroma. Nature 1974; 248: 740–3.

    Article  PubMed  CAS  Google Scholar 

  2. Govrin-Lippmann R, Devor M. Ongoing activity in severed nerves: Source and variation with time. Brain Res 1978; 159: 406–10.

    Article  PubMed  CAS  Google Scholar 

  3. Hokfelt T, Zhang X, Wiesenfeld-Hallin Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 1994; 17: 22–30.

    Article  PubMed  CAS  Google Scholar 

  4. Bridges D, Thompson SW, Rice AS. Mechanisms of neuropathic pain. Br J Anaesth 2001; 87: 12–26.

    Article  PubMed  CAS  Google Scholar 

  5. Wall PD, et al. Autotomy following peripheral nerve lesions: Experimental anaesthesia dolorosa. Pain 1979; 7: 103–11.

    Article  PubMed  CAS  Google Scholar 

  6. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988; 33: 87–107.

    Article  PubMed  CAS  Google Scholar 

  7. Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990; 43: 205–18.

    Article  PubMed  CAS  Google Scholar 

  8. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992; 50: 355–63.

    Article  PubMed  CAS  Google Scholar 

  9. Kim KJ, Yoon YW, Chung JM. Comparison of three rodent neuropathic pain models. Exp Brain Res 1997; 113: 200–6.

    Article  PubMed  CAS  Google Scholar 

  10. Decosterd I, Woolf CJ. Spared nerve injury: An animal model of persistent peripheral neuropathic pain. Pain 2000; 87: 149–58.

    Article  PubMed  CAS  Google Scholar 

  11. Lee BH, Won R, Baik EJ, Lee SH, Moon CH. An animal model of neuropathic pain employing injury to the sciatic nerve branches. Neuroreport 2000; 11: 657–61.

    PubMed  CAS  Google Scholar 

  12. Kupers R, Yu W, Persson JK, Xu XJ, Wiesenfeld-Hallin Z. Photochemically-induced ischemia of the rat sciatic nerve produces a dose-dependent and highly reproducible mechanical, heat and cold allodynia, and signs of spontaneous pain. Pain 1998; 76: 45–59.

    Article  PubMed  CAS  Google Scholar 

  13. Xu XJ, Hao JX, Aldskogius H, Seiger A, Wiesenfeld-Hallin Z. Chronic pain-related syndrome in rats after ischemic spinal cord lesion: A possible animal model for pain in patients with spinal cord injury. Pain 1992; 48: 279–90.

    Article  PubMed  CAS  Google Scholar 

  14. Malcangio M, Tomlinson DR. A pharmacologic analysis of mechanical hyperalgesia in streptozotocin/diabetic rats. Pain 1998; 76: 151–7.

    Article  PubMed  CAS  Google Scholar 

  15. Fleetwood-Walker SM, et al. Behavioural changes in the rat following infection with varicella-zoster virus. J Gen Virol 1999; 80: 2433–6.

    PubMed  CAS  Google Scholar 

  16. Wagner R, Janjigian M, Myers RR. Anti-inflammatory interleukin-10 therapy in CCI neuropathy decreases thermal hyperalgesia, macrophage recruitment, and endoneurial TNF-alpha expression. Pain 1998; 74: 35–42.

    Article  PubMed  CAS  Google Scholar 

  17. Jessell TM, Iversen LL. Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 1977; 268: 549–51.

    Article  PubMed  CAS  Google Scholar 

  18. Woolf CJ, Mannion RJ, Neumann S. Null mutations lacking substance: Elucidating pain mechanisms by genetic pharmacology. Neuron 1998; 20: 1063–6.

    Article  PubMed  CAS  Google Scholar 

  19. Zimmer A, et al. Hypoalgesia in mice with a targeted deletion of the tachykinin 1 gene. Proc Natl Acad Sci USA 1998; 95: 2630–5.

    Article  PubMed  CAS  Google Scholar 

  20. Cao YQ, et al. Primary afferent tachykinins are required to experience moderate to intense pain. Nature 1998; 392: 390–4.

    Article  PubMed  CAS  Google Scholar 

  21. Laird JM, et al. Deficits in visceral pain and hyperalgesia of mice with a disruption of the tachykinin NK1 receptor gene. Neuroscience 2000; 98: 345–52.

    Article  PubMed  CAS  Google Scholar 

  22. Wynick D, Small CJ, Bloom SR, Pachnis V. Targeted disruption of the murine galanin gene. Ann NY Acad Sci 1998; 863: 22–47.

    Article  PubMed  CAS  Google Scholar 

  23. Kerr BJ, et al. Galanin knockout mice reveal nociceptive deficits following peripheral nerve injury. Eur J Neurosci 2000; 12: 793–802.

    Article  PubMed  CAS  Google Scholar 

  24. Xu XJ, Hokfelt T, Bartfai T, Wiesenfeld-Hallin Z. Galanin and spinal nociceptive mechanisms: Recent advances and therapeutic implications. Neuropeptides 2000; 34: 137–47.

    Article  PubMed  CAS  Google Scholar 

  25. Xu ZQ, Shi TJ, Hokfelt T. Expression of galanin and a galanin receptor in several sensory systems and bone anlage of rat embryos. Proc Natl Acad Sci USA 1996; 93: 14901–5.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang X, et al. Regulation of expression of galanin and galanin receptors in dorsal root ganglia and spinal cord after axotomy and inflammation. Ann N Y Acad Sci 1998; 863: 402–13.

    Article  PubMed  CAS  Google Scholar 

  27. Hokfelt T, et al. Neuropeptides — an overview. Neuropharmacology 2000; 39: 1337–56.

    Article  PubMed  CAS  Google Scholar 

  28. Tatemoto K, Rokaeus A, Jornvall H, McDonald TJ, Mutt V. Galanin — a novel biologically active peptide from porcine intestine. FEBS Lett 1983; 164: 124–8.

    Article  PubMed  CAS  Google Scholar 

  29. Skofitsch G, Jacobowitz DM. Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 1985; 6: 509–46.

    Article  PubMed  CAS  Google Scholar 

  30. Ch'ng JL, et al. Distribution of galanin immunoreactivity in the central nervous system and the responses of galanin-containing neuronal pathways to injury. Neuroscience 1985; 16: 343–54.

    Article  PubMed  Google Scholar 

  31. Ju G, Melander T, Ceccatelli S, Hokfelt T, Frey P. Immunohistochemical evidence for a spinothalamic pathway co-containing cholecystokinin — and galanin-like immunoreactivities in the rat. Neuroscience 1987; 20: 439–56.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang X, Nicholas AP, Hokfelt T. Ultrastructural studies on peptides in the dorsal horn of the spinal cord-I. Co-existence of galanin with other peptides in primary afferents in normal rats. Neuroscience 1993; 57: 365–84.

    Article  PubMed  CAS  Google Scholar 

  33. Landry M, et al. Galanin expression in adult human dorsal root ganglion neurons: Initial observations. Neuroscience 2003; 117: 795–809.

    Article  PubMed  CAS  Google Scholar 

  34. Simmons DR, Spike RC, Todd AJ. Galanin is contained in GABAergic neurons in the rat spinal dorsal horn. Neurosci Lett 1995; 187: 119–22.

    Article  PubMed  CAS  Google Scholar 

  35. Hope PJ, Lang CW, Grubb BD, Duggan AW. Release of immunoreactive galanin in the spinal cord of rats with ankle inflammation: Studies with antibody microprobes. Neuroscience 1994; 60: 801–7.

    Article  PubMed  CAS  Google Scholar 

  36. Kar S, Quirion R. Galanin receptor binding sites in adult rat spinal cord respond differentially to neonatal capsaicin, dorsal rhizotomy and peripheral axotomy. Eur J Neurosci 1994; 6: 1917–21.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang X, et al. Neuropeptide Y and galanin binding sites in rat and monkey lumbar dorsal root ganglia and spinal cord and effect of peripheral axotomy. Eur J Neurosci 1995; 7: 367–80.

    Article  PubMed  CAS  Google Scholar 

  38. Waters SM, Krause JE. Distribution of galanin-1,-2 and-3 receptor messenger RNAs in central and peripheral rat tissues. Neuroscience 2000; 95: 265–71.

    Article  PubMed  CAS  Google Scholar 

  39. Parker EM, et al. Cloning and characterization of the rat GALR1 galanin receptor from Rin 14B insulinoma cells. Brain Res Mol Brain Res 1995; 34: 179–89.

    Article  PubMed  CAS  Google Scholar 

  40. Bartfai T, Hokfelt T, Langel U. Galanin—a neuroendocrine peptide. Crit Rev Neurobiol 1993; 7: 229–74.

    PubMed  CAS  Google Scholar 

  41. Xu S, Zhang Y, Lundeberg T, Yu L. Effects of galanin on wide-dynamic range neuron activity in the spinal dorsal horn of rats with sciatic nerve ligation. Regul Pept 2000; 95: 19–23.

    Article  PubMed  CAS  Google Scholar 

  42. Liu HX, Hokfelt T. The participation of galanin in pain processing at the spinal level. Trends Pharmacol Sci 2002; 23: 468–74.

    Article  PubMed  CAS  Google Scholar 

  43. Liu H, Hokfelt T. Effect of intrathecal galanin and its putative antagonist M35 on pain behavior in a neuropathic pain model. Brain Res 2000; 886: 67–72.

    Article  PubMed  CAS  Google Scholar 

  44. Wiesenfeld-Hallin Z, et al. Galanin-mediated control of pain: Enhanced role after nerve injury. Proc Natl Acad Sci USA 1992; 89: 3334–7.

    Article  PubMed  CAS  Google Scholar 

  45. Wiesenfeld-Hallin Z, Xu XJ. Neuropeptides in neuropathic and inflammatory pain with special emphasis on cholecystokinin and galanin. Eur J Pharmacol 2001; 429: 49–59.

    Article  PubMed  CAS  Google Scholar 

  46. Pooga M, et al. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 1998; 16: 857–61.

    Article  PubMed  CAS  Google Scholar 

  47. Ramer MS, Ma W, Murphy PG, Richardson PM, Bisby MA. Galanin expression in neuropathic pain: Friend or foe? Ann N Y Acad Sci 1998; 863: 390–401.

    Article  PubMed  CAS  Google Scholar 

  48. Liu HX, et al. Receptor subtype-specific pronociceptive and analgesic actions of galanin in the spinal cord: Selective actions via GalR1 and GalR2 receptors. Proc Natl Acad Sci USA 2001; 98: 9960–4.

    Article  PubMed  CAS  Google Scholar 

  49. Xu XJ, Wiesenfeld-Hallin Z, Villar MJ, Fahrenkrug J, Hokfelt T. On the Role of Galanin, Substance P and Other Neuropeptides in Primary Sensory Neurons of the Rat: Studies on Spinal Reflex Excitability and Peripheral Axotomy. Eur J Neurosci 1990; 2: 733–43.

    Article  PubMed  Google Scholar 

  50. Reeve AJ, Walker K, Urban L, Fox A. Excitatory effects of galanin in the spinal cord of intact, anaesthetized rats. Neurosci Lett 2000; 295: 25–8.

    Article  PubMed  CAS  Google Scholar 

  51. Cridland RA, Henry JL. Effects of intrathecal administration of neuropeptides on a spinal nociceptive reflex in the rat: VIP, galanin, CGRP, TRH, somatostatin and angiotensin II. Neuropeptides 1988; 11: 23–32.

    Article  PubMed  CAS  Google Scholar 

  52. Nussbaumer JC, Yanagisawa M, Otsuka M. Pharmacological properties of a C-fibre response evoked by saphenous nerve stimulation in an isolated spinal cord-nerve preparation of the newborn rat. Br J Pharmacol 1989; 98: 373–82.

    PubMed  CAS  Google Scholar 

  53. Yanagisawa M, Yagi N, Otsuka M, Yanaihara C, Yanaihara N. Inhibitory effects of galanin on the isolated spinal cord of the newborn rat. Neurosci Lett 1986; 70: 278–82.

    Article  PubMed  CAS  Google Scholar 

  54. Branchek TA, Smith KE, Gerald C, Walker MW. Galanin receptor subtypes. Trends Pharmacol Sci 2000; 21: 109–17.

    Article  PubMed  CAS  Google Scholar 

  55. Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan. Faseb J 1998; 12: 67–77.

    PubMed  CAS  Google Scholar 

  56. O'Donnell D, Ahmad S, Wahlestedt C, Walker P. Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: Distinct distribution from GALR1. J Comp Neurol 1999; 409: 469–81.

    Article  PubMed  Google Scholar 

  57. Landry M, Liu H-X, Shi T-J, Brumovsky P, Nagy F, Hökfelt T. Galaninergic mechanisms at the spinal level: Focus on histochemical phenotyping. Neuropeptides 2005 (sous presse).

  58. Hokfelt T, Wiesenfeld-Hallin Z, Villar M, Melander T. Increase of galanin-like immunoreactivity in rat dorsal root ganglion cells after peripheral axotomy. Neurosci Lett 1987; 83: 217–20.

    Article  PubMed  CAS  Google Scholar 

  59. Villar MJ, et al. Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience 1989; 33: 587–604.

    Article  PubMed  CAS  Google Scholar 

  60. Landry M, Holmberg K, Zhang X, Hokfelt T. Effect of axotomy on expression of NPY, galanin, and NPY Y1 and Y2 receptors in dorsal root ganglia and the superior cervical ganglion studied with double-labeling in situ hybridization and immunohistochemistry. Exp Neurol 2000; 162: 361–84.

    Article  PubMed  CAS  Google Scholar 

  61. Ma W, Bisby MA. Differential expression of galanin immunoreactivities in the primary sensory neurons following partial and complete sciatic nerve injuries. Neuroscience 1997; 79: 1183–95.

    Article  PubMed  CAS  Google Scholar 

  62. Nahin RL, Ren K, De Leon M, Ruda M. Primary sensory neurons exhibit altered gene expression in a rat model of neuropathic pain. Pain 1994; 58: 95–108.

    Article  PubMed  CAS  Google Scholar 

  63. Shi TJ, Cui JG, Meyerson BA, Linderoth B, Hokfelt T. Regulation of galanin and neuropeptide Y in dorsal root ganglia and dorsal horn in rat mononeuropathic models: Possible relation to tactile hypersensitivity. Neuroscience 1999; 93: 741–57.

    Article  PubMed  CAS  Google Scholar 

  64. Kashiba H, Senba E, Kawai Y, Ueda Y, Tohyama M. Axonal blockade induces the expression of vasoactive intestinal polypeptide and galanin in rat dorsal root ganglion neurons. Brain Res 1992; 577: 19–28.

    Article  PubMed  CAS  Google Scholar 

  65. Kerekes N, Landry M, Rydh-Rinder M, Hokfelt T. The effect of NGF, BDNF and bFGF on expression of galanin in cultured rat dorsal root ganglia. Brain Res 1997; 754: 131–41.

    Article  PubMed  CAS  Google Scholar 

  66. Verge VM, Richardson PM, Wiesenfeld-Hallin Z, Hokfelt T. Differential influence of nerve growth factor on neuropeptide expression in vivo: A novel role in peptide suppression in adult sensory neurons. J Neurosci 1995; 15: 2081–96.

    PubMed  CAS  Google Scholar 

  67. Sun Y, Zigmond RE. Involvement of leukemia inhibitory factor in the increases in galanin and vasoactive intestinal peptide mRNA and the decreases in neuropeptide Y and tyrosine hydroxylase mRNA in sympathetic neurons after axotomy. J Neurochem 1996; 67: 1751–60.

    Article  PubMed  CAS  Google Scholar 

  68. Rao MS, et al. Leukemia inhibitory factor mediates an injury response but not a target-directed developmental transmitter switch in sympathetic neurons. Neuron 1993; 11: 1175–85.

    Article  PubMed  CAS  Google Scholar 

  69. Kerekes N, Landry M, Hokfelt T. Leukemia inhibitory factor regulates galanin/galanin message-associated peptide expression in cultured mouse dorsal root ganglia; with a note on in situ hybridization methodology. Neuroscience 1999; 89: 1123–34.

    Article  PubMed  CAS  Google Scholar 

  70. Colvin LA, Duggan AW. Primary afferent-evoked release of immunoreactive galanin in the spinal cord of the neuropathic rat. Br J Anaesth 1998; 81: 436–43.

    PubMed  CAS  Google Scholar 

  71. Ji RR, et al. Galanin antisense oligonucleotides reduce galanin levels in dorsal root ganglia and induce autotomy in rats after axotomy. Proc Natl Acad Sci USA 1994; 91: 12540–3.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang YP, Lundeberg T, Yu LC. Interactions of galanin and morphine in the spinal antinociception in rats with mononeuropathy. Brain Res 2000; 852: 485–7.

    Article  PubMed  CAS  Google Scholar 

  73. Selve N, et al. Galanin receptor antagonists attenuate spinal antinociceptive effects of DAMGO, tramadol and non-opioid drugs in rats. Brain Res 1996; 735: 177–87.

    Article  PubMed  CAS  Google Scholar 

  74. Hua XY, et al. Galanin acts at GalR1 receptors in spinal antinociception: Synergy with morphine and AP-5. J Pharmacol Exp Ther 2004; 308: 574–82.

    Article  PubMed  CAS  Google Scholar 

  75. Xu IS, Grass S, Xu XJ, Wiesenfeld-Hallin Z. On the role of galanin in mediating spinal flexor reflex excitability in inflammation. Neuroscience 1998; 85: 827–35.

    Article  PubMed  CAS  Google Scholar 

  76. Lindefors N, Linden A, Brene S, Sedvall G, Persson H. CCK peptides and mRNA in the human brain. Prog Neurobiol 1993; 40: 671–90.

    Article  PubMed  CAS  Google Scholar 

  77. Hill DR, Shaw TM, Graham W, Woodruff GN. Autoradiographical detection of cholecystokinin-A receptors in primate brain using 125l-Bolton Hunter CCK-8 and 3H-MK-329. J Neurosci 1990; 10: 1070–81.

    PubMed  CAS  Google Scholar 

  78. Cesselin F. Opioid and anti-opioid peptides. Fundam Clin Pharmacol 1995; 9: 409–33.

    Article  PubMed  CAS  Google Scholar 

  79. Watkins LR, et al. Cholecystokinin antagonists selectively potentiate analgesia induced by endogenous opiates. Brain Res 1985; 327: 181–90.

    Article  PubMed  CAS  Google Scholar 

  80. Wiesenfeld-Hallin Z, Xu J. The role of cholecystokinin in nociception, neuropathic pain and opiate tolerance. Regul Pept 1996; 65: 23–8.

    Article  PubMed  CAS  Google Scholar 

  81. Wiesenfeld-Hallin Z, Xu XJ, Hughes J, Horwell DC, Hokfelt T. PD134308, a selective antagonist of cholecystokinin type B receptor, enhances the analgesic effect of morphine and synergistically interacts with intrathecal galanin to depress spinal nociceptive reflexes. Proc Natl Acad Sci USA 1990; 87: 7105–9.

    Article  PubMed  CAS  Google Scholar 

  82. Wang XJ, Han JS. Modification by cholecystokinin octapeptide of the binding of mu-, delta-, and kappa-opioid receptors. J Neurochem 1990; 55: 1379–82.

    Article  PubMed  CAS  Google Scholar 

  83. Wang J, Ren M, Han J. Mobilization of calcium from intracellular stores as one of the mechanisms underlying the antiopioid effect of cholecystokinin octapeptide. Peptides 1992; 13: 947–51.

    Article  PubMed  CAS  Google Scholar 

  84. Arnér EA, Meyerson B. Opioids in neuropathic pain. Pain Dig 1993; 3: 15–22.

    Google Scholar 

  85. Zhang X, et al. Marked increase in cholecystokinin B receptor messenger RNA levels in rat dorsal root ganglia after peripheral axotomy. Neuroscience 1993; 57: 227–33.

    Article  PubMed  CAS  Google Scholar 

  86. Xu XJ, Hokfelt T, Hughes J, Wiesenfeld-Hallin Z. The CCK-B antagonist C1988 enhances the reflex-depressive effect of morphine in axotomized rats. Neuroreport 1994; 5: 718–20.

    PubMed  CAS  Google Scholar 

  87. Nichols ML, Bian D, Ossipov MH, Lai J, Porreca F. Regulation of morphine antiallodynic efficacy by cholecystokinin in a model of neuropathic pain in rats. J Pharmacol Exp Ther 1995; 275: 1339–45.

    PubMed  CAS  Google Scholar 

  88. Stanfa LC, Dickenson AH. Cholecystokinin as a factor in the enhanced potency of spinal morphine following carrageenin inflammation. Br J Pharmacol 1993; 108: 967–73.

    PubMed  CAS  Google Scholar 

  89. Gustafsson H, et al. Peripheral axotomy influences the in vivo release of cholecystokinin in the spinal cord dorsal horn-possible involvement of cholecystokinin-B receptors. Brain Res 1998; 790: 141–50.

    Article  PubMed  CAS  Google Scholar 

  90. Benoliel JJ, et al. Differential inhibitory/stimulatory modulation of spinal CCK release by mu and delta opioid agonists, and selective blockade of mu-dependent inhibition by kappa receptor stimulation. Neurosci Lett 1991; 124: 204–7.

    Article  PubMed  CAS  Google Scholar 

  91. Lucas GA, Xu XJ, Wiesenfeld-Hallin Z. On the role of cholecystokinin in the mediation of spinal reflex excitability in intact and axotomized rats. Neuropeptides 1998; 32: 73–8.

    Article  PubMed  CAS  Google Scholar 

  92. Zieglgansberger W, French ED, Siggins GR, Bloom FE. Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science 1979; 205: 415–7.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang X, de Araujo Lucas G, Elde R, Wiesenfeld-Hallin Z, Hokfelt T. Effect of morphine on cholecystokinin and mu-opioid receptor-like immunoreactivities in rat spinal dorsal horn neurons after peripheral axotomy and inflammation. Neuroscience 2000; 95: 197–207.

    Article  PubMed  CAS  Google Scholar 

  94. Afify EA, Law PY, Riedl M, Elde R, Loh HH. Role of carboxyl terminus of mu-and delta-opioid receptor in agonist-induced down-regulation. Brain Res Mol Brain Res 1998; 54: 24–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Landry, M., Nagy, F. Douleurs neuropathiques et inflammatoires: modèles animaux et rôles fonctionnels des neuropeptides. Doul. et Analg. 18, 151–158 (2005). https://doi.org/10.1007/BF03007280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03007280

Mots-clés

Navigation