Skip to main content
Log in

Resolving CP violation by standard and nonstandard interactions and parameter degeneracy in neutrino oscillations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In neutrino oscillation with non-standard interactions (NSI) the system is enriched with CP violation caused by phases due to NSI in addition to the standard lepton Kobayashi-Maskawa phase δ. In this paper we show that it is possible to disentangle the two CP violating effects by measurement of muon neutrino appearance by a near-far two detector setting in neutrino factory experiments. Prior to the quantitative analysis we investigate in detail the various features of the neutrino oscillations with NSI, but under the assumption that only one of the NSI elements, εeμ or εeτ, is present. They include synergy between the near and the far detectors, the characteristic differences between the εeμ and εeτ systems, and in particular, the parameter degeneracy. Finally, we use a concrete setting with the muon energy of 50GeV and magnetized iron detectors at two baselines, one at L = 3000 km and the other at L = 7000 km, each having a fiducial mass of 50 kton to study the discovery potential of NSI and its CP violation effects. We demonstrate, by assuming 4 × 1021 useful muon decays for both polarities, that one can identify nonstandard CP violation down to |εeμ| ≃ a few × 10−3, and |εeτ| ≃ 10−2 at 3σ CL for θ13 down to sin213 = 10−4 in most of the region of δ. The impact of the existence of NSI on the measurement of δ and the mass hierarchy is also worked out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  2. T. Kajita, Atmospheric neutrinos, New J. Phys. 6 (2004) 194 [SPIRES].

    Article  ADS  Google Scholar 

  3. A.B. McDonald, Solar neutrino measurements, New J. Phys. 6 (2004) 121 [astro-ph/0406253] [SPIRES].

    Article  ADS  Google Scholar 

  4. K. Inoue, Reactor neutrino oscillation studies with KamLAND, New J. Phys. 6 (2004) 147 [SPIRES].

    Article  ADS  Google Scholar 

  5. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [SPIRES].

    ADS  Google Scholar 

  6. J.W.F. Valle, Resonant oscillations of massless neutrinos in matter, Phys. Lett. B 199 (1987) 432 [SPIRES].

    ADS  Google Scholar 

  7. M.M. Guzzo, A. Masiero and S.T. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum, Phys. Lett. B 260 (1991) 154 [SPIRES].

    ADS  Google Scholar 

  8. E. Roulet, Mikheyev-Smirnov-Wolfenstein effect with flavor-changing neutrino nteractions, Phys. Rev. D 44 (1991) 935 [SPIRES].

    ADS  Google Scholar 

  9. Y. Grossman, Nonstandard neutrino interactions and neutrino oscillation experiments, Phys. Lett. B 359 (1995) 141 [hep-ph/9507344] [SPIRES].

    ADS  Google Scholar 

  10. Z. Berezhiani and A. Rossi, Limits on the non-standard interactions of neutrinos from e + e colliders, Phys. Lett. B 535 (2002) 207 [hep-ph/0111137] [SPIRES].

    ADS  Google Scholar 

  11. R.N. Mohapatra and A.Y. Smirnov, Neutrino mass and new physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [SPIRES].

    Article  ADS  Google Scholar 

  12. N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [SPIRES].

    Article  ADS  Google Scholar 

  13. M. Gell-Mann and M. Levy, The axial vector current in beta decay, Nuovo Cim. 16 (1960) 705 [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].

    Article  ADS  Google Scholar 

  15. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  16. A. Hocker and Z. Ligeti, CP violation and the CKM matrix, Ann. Rev. Nucl. Part. Sci. 56 (2006) 501 [hep-ph/0605217] [SPIRES].

    Article  ADS  Google Scholar 

  17. H. Nunokawa, S.J. Parke and J.W.F. Valle, CP violation and neutrino oscillations, Prog. Part. Nucl. Phys. 60 (2008) 338 [arXiv:0710.0554] [SPIRES].

    Article  ADS  Google Scholar 

  18. M.C. Gonzalez-Garcia, Y. Grossman, A. Gusso and Y. Nir, New CP-violation in neutrino oscillations, Phys. Rev. D 64 (2001) 096006 [hep-ph/0105159] [SPIRES].

    ADS  Google Scholar 

  19. S. Geer, Neutrino beams from muon storage rings: characteristics and physics potential, Phys. Rev. D 57 (1998) 6989 [Erratum ibid. D 59 (1999) 039903] [hep-ph/9712290] [SPIRES].

    ADS  Google Scholar 

  20. A. De Rujula, M.B. Gavela and P. Hernández, Neutrino oscillation physics with a neutrino factory, Nucl. Phys. B 547 (1999) 21 [hep-ph/9811390] [SPIRES].

    Article  ADS  Google Scholar 

  21. P. Huber, T. Schwetz and J.W.F. Valle, How sensitive is a neutrino factory to the angle θ13 ?, Phys. Rev. Lett. 88 (2002) 101804 [hep-ph/0111224] [SPIRES].

    Article  ADS  Google Scholar 

  22. P. Huber, T. Schwetz and J.W.F. Valle, Confusing non-standard neutrino interactions with oscillations at a neutrino factory, Phys. Rev. D 66 (2002) 013006 [hep-ph/0202048] [SPIRES].

    ADS  Google Scholar 

  23. N.C. Ribeiro, H. Minakata, H. Nunokawa, S. Uchinami and R. Zukanovich Funchal, Probing non-standard neutrino interactions with neutrino factories, JHEP 12 (2007) 002 [arXiv:0709.1980] [SPIRES].

    Article  Google Scholar 

  24. W. Winter, Testing non-standard CP-violation in neutrino propagation, Phys. Lett. B 671 (2009) 77 [arXiv:0808.3583] [SPIRES].

    ADS  Google Scholar 

  25. S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [SPIRES].

    Article  ADS  Google Scholar 

  26. G. Altarelli and D. Meloni, CP violation in neutrino oscillations and new physics, Nucl. Phys. B 809 (2009) 158 [arXiv:0809.1041] [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Antusch, M. Blennow, E. Fernandez-Martinez and J. Lopez-Pavon, Probing non-unitary mixing and CP-violation at a neutrino factory, Phys. Rev. D 80 (2009) 033002 [arXiv:0903.3986] [SPIRES].

    ADS  Google Scholar 

  28. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].

    Article  ADS  Google Scholar 

  29. Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [SPIRES].

    Article  ADS  Google Scholar 

  30. M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [SPIRES].

    ADS  Google Scholar 

  31. S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on non-standard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [SPIRES].

    Article  ADS  Google Scholar 

  32. S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the standard model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [SPIRES].

    Article  ADS  Google Scholar 

  33. C. Biggio, M. Blennow and E. Fernandez-Martinez, Loop bounds on non-standard neutrino interactions, JHEP 03 (2009) 139 [arXiv:0902.0607] [SPIRES].

    Article  ADS  Google Scholar 

  34. T. Ota, J. Sato and N.-a. Yamashita, Oscillation enhanced search for new interaction with neutrinos, Phys. Rev. D 65 (2002) 093015 [hep-ph/0112329] [SPIRES].

    ADS  Google Scholar 

  35. J. Burguet-Castell, M.B. Gavela, J.J. Gomez-Cadenas, P. Hernández and O. Mena, On the measurement of leptonic CP-violation, Nucl. Phys. B 608 (2001) 301 [hep-ph/0103258] [SPIRES].

    Article  ADS  Google Scholar 

  36. H. Minakata and H. Nunokawa, Exploring neutrino mixing with low energy superbeams, JHEP 10 (2001) 001 [hep-ph/0108085] [SPIRES].

    Article  ADS  Google Scholar 

  37. H. Minakata and H. Nunokawa, CERN to Gran Sasso: an ideal distance for superbeam?, Nucl. Phys. Proc. Suppl. 110 (2002) 404 [hep-ph/0111131] [SPIRES].

    ADS  Google Scholar 

  38. G.L. Fogli and E. Lisi, Tests of three-flavor mixing in long-baseline neutrino oscillation experiments, Phys. Rev. D 54 (1996) 3667 [hep-ph/9604415] [SPIRES].

    ADS  Google Scholar 

  39. T. Kikuchi, H. Minakata and S. Uchinami, Perturbation theory of neutrino oscillation with nonstandard neutrino interactions, JHEP 03 (2009) 114 [arXiv:0809.3312] [SPIRES].

    Article  ADS  Google Scholar 

  40. H. Minakata, H. Sugiyama, O. Yasuda, K. Inoue and F. Suekane, Reactor measurement of θ13 and its complementarity to long-baseline experiments, Phys. Rev. D 68 (2003) 033017 [Erratum ibid. D 70 (2004) 059901] [hep-ph/0211111] [SPIRES].

    ADS  Google Scholar 

  41. K. Anderson et al., White paper report on using nuclear reactors to search for a value of θ13, hep-ex/0402041 [SPIRES].

  42. H. Minakata and H. Nunokawa, Measuring leptonic CP-violation by low energy neutrino oscillation experiments, Phys. Lett. B 495 (2000) 369 [hep-ph/0004114] [SPIRES].

    ADS  Google Scholar 

  43. J. Sato, Neutrino oscillation and CP-violation, Nucl. Instrum. Meth. A 472 (2001) 434 [hep-ph/0008056] [SPIRES].

    ADS  Google Scholar 

  44. B. Richter, Conventional beams or neutrino factories: the next generation of accelerator-based neutrino experiments, hep-ph/0008222 [SPIRES].

  45. P. Zucchelli, A novel concept for a \( \bar v \)/e/ν/e neutrino factory: the beta beam, Phys. Lett. B 532 (2002) 166 [SPIRES].

    ADS  Google Scholar 

  46. J. Bouchez, M. Lindroos and M. Mezzetto, Beta beams: present design and expected performances, AIP Conf. Proc. 721 (2004) 37 [hep-ex/0310059] [SPIRES].

    Article  ADS  Google Scholar 

  47. A.M. Gago, M.M. Guzzo, H. Nunokawa, W.J.C. Teves and R. Zukanovich Funchal, Probing flavor changing neutrino interactions using neutrino beams from a muon storage ring, Phys. Rev. D 64 (2001) 073003 [hep-ph/0105196] [SPIRES].

    ADS  Google Scholar 

  48. M. Campanelli and A. Romanino, Effects of new physics in neutrino oscillations in matter, Phys. Rev. D 66 (2002) 113001 [hep-ph/0207350] [SPIRES].

    ADS  Google Scholar 

  49. J. Kopp, M. Lindner and T. Ota, Discovery reach for non-standard interactions in a neutrino factory, Phys. Rev. D 76 (2007) 013001 [hep-ph/0702269] [SPIRES].

    ADS  Google Scholar 

  50. J. Holeczek, J. Kisiel, J. Syska and M. Zralek, Searching for new physics in future neutrino factory experiments, Eur. Phys. J. C 52 (2007) 905 [arXiv:0706.1442] [SPIRES].

    Article  ADS  Google Scholar 

  51. J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, Phys. Rev. D 78 (2008) 053007 [arXiv:0804.2261] [SPIRES].

    ADS  Google Scholar 

  52. J. Tang and W. Winter, Physics with near detectors at a neutrino factory, Phys. Rev. D 80 (2009) 053001 [arXiv:0903.3039] [SPIRES].

    Google Scholar 

  53. A. Cervera et al., Golden measurements at a neutrino factory, Nucl. Phys. B 579 (2000) 17 [Erratum ibid. B 593 (2001) 731] [hep-ph/0002108] [SPIRES].

    Article  ADS  Google Scholar 

  54. DELPHI collaboration, J. Abdallah et al., Photon events with missing energy in e + e collisions ats = 130GeV to 209GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [SPIRES].

    ADS  Google Scholar 

  55. T. Ota and J. Sato, Can ICARUS and OPERA give information on a new physics?, Phys. Lett. B 545 (2002) 367 [hep-ph/0202145] [SPIRES].

    ADS  Google Scholar 

  56. T. Hattori, T. Hasuike and S. Wakaizumi, Flavor changing neutrino interactions and CP-violation in neutrino oscillations, Prog. Theor. Phys. 114 (2005) 439 [hep-ph/0210138] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  57. A. Friedland and C. Lunardini, A test of τ neutrino interactions with atmospheric neutrinos and K2K, Phys. Rev. D 72 (2005) 053009 [hep-ph/0506143] [SPIRES].

    ADS  Google Scholar 

  58. A. Friedland and C. Lunardini, Two modes of searching for new neutrino interactions at MINOS, Phys. Rev. D 74 (2006) 033012 [hep-ph/0606101] [SPIRES].

    ADS  Google Scholar 

  59. M. Honda, N. Okamura and T. Takeuchi, Matter effect on neutrino oscillations from the violation of universality in neutrino neutral current interactions, hep-ph/0603268 [SPIRES].

  60. M. Honda, Y. Kao, N. Okamura, A. Pronin and T. Takeuchi, Constraints on new physics from long baseline neutrino oscillation experiments, arXiv:0707.4545 [SPIRES].

  61. N. Kitazawa, H. Sugiyama and O. Yasuda, Will MINOS see new physics?, hep-ph/0606013 [SPIRES].

  62. O. Yasuda, New physics effects in long baseline experiments, Acta Phys. Polon. B 38 (2007) 3381 [arXiv:0710.2601] [SPIRES].

    ADS  Google Scholar 

  63. H. Sugiyama, More on non-standard interaction at MINOS, AIP Conf. Proc. 981 (2008) 216 [arXiv:0711.4303] [SPIRES].

    Article  ADS  Google Scholar 

  64. M. Blennow, T. Ohlsson and J. Skrotzki, Effects of non-standard interactions in the MINOS experiment, Phys. Lett. B 660 (2008) 522 [hep-ph/0702059] [SPIRES].

    ADS  Google Scholar 

  65. N.C. Ribeiro et al., Probing nonstandard neutrino physics by two identical detectors with different baselines, Phys. Rev. D 77 (2008) 073007 [arXiv:0712.4314] [SPIRES].

    ADS  Google Scholar 

  66. A. Esteban-Pretel, J.W.F. Valle and P. Huber, Can OPERA help in constraining neutrino non-standard interactions?, Phys. Lett. B 668 (2008) 197 [arXiv:0803.1790] [SPIRES].

    ADS  Google Scholar 

  67. M. Blennow, D. Meloni, T. Ohlsson, F. Terranova and M. Westerberg, Non-standard interactions using the OPERA experiment, Eur. Phys. J. C 56 (2008) 529 [arXiv:0804.2744] [SPIRES].

    Article  Google Scholar 

  68. M.C. Gonzalez-Garcia et al., Atmospheric neutrino observations and flavor changing interactions, Phys. Rev. Lett. 82 (1999) 3202 [hep-ph/9809531] [SPIRES].

    Article  ADS  Google Scholar 

  69. M.C. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [SPIRES].

    ADS  Google Scholar 

  70. A. Friedland, C. Lunardini and M. Maltoni, Atmospheric neutrinos as probes of neutrino matter interactions, Phys. Rev. D 70 (2004) 111301 [hep-ph/0408264] [SPIRES].

    ADS  Google Scholar 

  71. J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [SPIRES].

    Article  ADS  Google Scholar 

  72. J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Constraining non-standard interactions in ν/ee or \( \bar v \)/ee scattering, Phys. Rev. D 73 (2006) 113001 [hep-ph/0512195] [SPIRES].

    ADS  Google Scholar 

  73. J. Barranco, O.G. Miranda and T.I. Rashba, Low energy neutrino experiments sensitivity to physics beyond the standard model, Phys. Rev. D 76 (2007) 073008 [hep-ph/0702175] [SPIRES].

    ADS  Google Scholar 

  74. K. Scholberg, Prospects for measuring coherent neutrino nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev. D 73 (2006) 033005 [hep-ex/0511042] [SPIRES].

    ADS  Google Scholar 

  75. A. Bueno, M.C. Carmona, J. Lozano and S. Navas, Observation of coherent neutrino-nucleus elastic scattering at a beta beam, Phys. Rev. D 74 (2006) 033010 [SPIRES].

    ADS  Google Scholar 

  76. S. Bergmann, M.M. Guzzo, P.C. de Holanda, P.I. Krastev and H. Nunokawa, Status of the solution to the solar neutrino problem based on nonstandard neutrino interactions, Phys. Rev. D 62 (2000) 073001 [hep-ph/0004049] [SPIRES].

    ADS  Google Scholar 

  77. A. Friedland, C. Lunardini and C. Pena-Garay, Solar neutrinos as probes of neutrino-matter interactions, Phys. Lett. B 594 (2004) 347 [ep-ph/0402266] [SPIRES].

    ADS  Google Scholar 

  78. M.M. Guzzo, P.C. de Holanda and O.L.G. Peres, Effects of non-standard neutrino interactions on MSW-LMA solution, Phys. Lett. B 591 (2004) 1 [hep-ph/0403134] [SPIRES].

    ADS  Google Scholar 

  79. O.G. Miranda, M.A. Tortola and J.W.F. Valle, Are solar neutrino oscillations robust?, JHEP 10 (2006) 008 [hep-ph/0406280] [SPIRES].

    Article  ADS  Google Scholar 

  80. H. Nunokawa, Y.Z. Qian, A. Rossi and J.W.F. Valle, Resonant conversion of massless neutrinos in supernovae, Phys. Rev. D 54 (1996) 4356 [hep-ph/9605301] [SPIRES].

    ADS  Google Scholar 

  81. H. Nunokawa, A. Rossi and J.W.F. Valle, Supernova bounds on supersymmetric R-parity violating interactions, Nucl. Phys. B 482 (1996) 481 [hep-ph/9606445] [SPIRES].

    Article  ADS  Google Scholar 

  82. G.L. Fogli, E. Lisi, A. Mirizzi and D. Montanino, Revisiting nonstandard interaction effects on supernova neutrino flavor oscillations, Phys. Rev. D 66 (2002) 013009 [hep-ph/0202269] [SPIRES].

    ADS  Google Scholar 

  83. P.S. Amanik and G.M. Fuller, Stellar collapse dynamics with neutrino flavor changing neutral currents, Phys. Rev. D 75 (2007) 083008 [stro-ph/0606607] [SPIRES].

    ADS  Google Scholar 

  84. A. Esteban-Pretel, R. Tomas and J.W.F. Valle, Probing non-standard neutrino interactions with supernova neutrinos, Phys. Rev. D 76 (2007) 053001 [arXiv:0704.0032] [SPIRES].

    ADS  Google Scholar 

  85. M. Blennow, A. Mirizzi and P.D. Serpico, Nonstandard neutrino-neutrino refractive effects in dense neutrino gases, Phys. Rev. D 78 (2008) 113004 [arXiv:0810.2297] [SPIRES].

    ADS  Google Scholar 

  86. M. Blennow and D. Meloni, Non-standard interaction effects on astrophysical neutrino fluxes, Phys. Rev. D 80 (2009) 065009 [arXiv:0901.2110] [SPIRES].

    Google Scholar 

  87. J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [SPIRES].

    ADS  Google Scholar 

  88. CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [SPIRES].

    ADS  Google Scholar 

  89. CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [SPIRES].

    ADS  Google Scholar 

  90. F. Boehm et al., Final results from the Palo Verde neutrino oscillation experiment, Phys. Rev. D 64 (2001) 112001 [hep-ex/0107009] [SPIRES].

    ADS  Google Scholar 

  91. K2K collaboration, M.H. Ahn et al., Search for electron neutrino appearance in a 250 km long-baseline experiment, Phys. Rev. Lett. 93 (2004) 051801 [hep-ex/0402017] [SPIRES].

    Article  ADS  Google Scholar 

  92. P. Huber and W. Winter, Neutrino factories and the ’magic’ baseline, Phys. Rev. D 68 (2003) 037301 [hep-ph/0301257] [SPIRES].

    ADS  Google Scholar 

  93. A.Y. Smirnov, The MSW effect and matter effects in neutrino oscillations, Phys. Scripta T 121 (2005) 57 [hep-ph/0412391] [SPIRES].

    Article  ADS  Google Scholar 

  94. V. Barger, D. Marfatia and K. Whisnant, Breaking eight-fold degeneracies in neutrino CP-violation, mixing and mass hierarchy, Phys. Rev. D 65 (2002) 073023 [hep-ph/0112119] [SPIRES].

    ADS  Google Scholar 

  95. H. Minakata and S. Uchinami, On in situ determination of earth matter density in neutrino factory, Phys. Rev. D 75 (2007) 073013 [hep-ph/0612002] [SPIRES].

    ADS  Google Scholar 

  96. H. Minakata and H. Nunokawa, How to measure CP-violation in neutrino oscillation experiments?, Phys. Lett. B 413 (1997) 369 [hep-ph/9706281] [SPIRES].

    ADS  Google Scholar 

  97. The T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [SPIRES]; for an updated version, see http://neutrino.kek.jp/jhfnu/loi/loi.v2.030528.pdf.

  98. M. Ishitsuka, T. Kajita, H. Minakata and H. Nunokawa, Resolving neutrino mass hierarchy and CP degeneracy by two identical detectors with different baselines, Phys. Rev. D 72 (2005) 033003 [hep-ph/0504026] [SPIRES].

    ADS  Google Scholar 

  99. T. Kajita, H. Minakata, S. Nakayama and H. Nunokawa, Resolving eight-fold neutrino parameter degeneracy by two identical detectors with different baselines, Phys. Rev. D 75 (2007) 013006 [hep-ph/0609286] [SPIRES].

    ADS  Google Scholar 

  100. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [SPIRES].

    Article  Google Scholar 

  101. ISS Detector Working Group collaboration, T. Abe et al., Detectors and flux instrumentation for future neutrino facilities, 2009 JINST 4 T05001 [arXiv:0712.4129] [SPIRES].

    Google Scholar 

  102. H. Minakata, Neutrino’s non-standard interactions: another eel under a willow?, arXiv:0905.1387 [SPIRES].

  103. T. Kajita, H. Minakata and H. Nunokawa, Method for determination of |U(e3)| in neutrino oscillation appearance experiments, Phys. Lett. B 528 (2002) 245 [hep-ph/0112345] [SPIRES].

    ADS  Google Scholar 

  104. H. Minakata, H. Nunokawa and S.J. Parke, Parameter degeneracies in neutrino oscillation measurement of leptonic CP and T violation, Phys. Rev. D 66 (2002) 093012 [hep-ph/0208163] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gago.

Additional information

ArXiv ePrint: 0904.3360

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gago, A.M., Minakata, H., Nunokawa, H. et al. Resolving CP violation by standard and nonstandard interactions and parameter degeneracy in neutrino oscillations. J. High Energ. Phys. 2010, 49 (2010). https://doi.org/10.1007/JHEP01(2010)049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)049

Keywords

Navigation