Skip to main content
Log in

Sparticle mass spectra from SU(5) SUSY GUT models with bτ Yukawa coupling unification

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Supersymmetric grand unified models based on the gauge group SU(5) often require in addition to gauge coupling unification, the unification of b-quark and τ -lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space under the condition of bτ Yukawacouplingunificationusing2-loopMSSMRGEsincludingfull1-loopthreshold effects. The Yukawa-unified solutions break down into two classes. Solutions with low tan β ~ 3 − 11 are characterized by \( {m_{{\mathop{g}\limits^{\sim } }}} \) ~ 1 − 4 TeV and \( {m_{{\mathop{q}\limits^{\sim } }}} \) ~ 1 − 5 TeV. Many of these solutions would be beyond LHC reach, although they contain a light Higgs scalar with m h < 123 GeV and so may be excluded should the LHC Higgs hint persist. The second class of solutions occurs at large tan β ∼ 35 − 60, and are a subset of tbτ unified solutions. Constraining only bτ unification to ∼ 5% favors a rather light gluino with \( {m_{{\mathop{g}\limits^{\sim } }}} \) ∼ 0.5 − 2 TeV, which should ultimately be accessible to LHC searches. While our bτ unified solutions can be consistent with a picture of neutralino-only cold dark matter, invoking additional moduli or Peccei-Quinn superfields can allow for all of our Yukawa-unified solutions to be consistent with the measured dark matter abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

    Article  ADS  Google Scholar 

  2. H. Georgi, H.R. Quinn and S. Weinberg, Hierarchy of interactions in unified gauge theories, Phys. Rev. Lett. 33 (1974) 451 [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Buras, J.R. Ellis, M. Gaillard and D.V. Nanopoulos, Aspects of the Grand Unification of Strong, Weak and Electromagnetic Interactions, Nucl. Phys. B 135 (1978) 66 [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Mohapatra, Supersymmetric grand unification: an update, hep-ph/9911272 [INSPIRE].

  5. S. Raby, Desperately seeking supersymmetry (SUSY), Rept. Prog. Phys. 67 (2004) 755.

    Article  ADS  Google Scholar 

  6. E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

    Article  ADS  Google Scholar 

  7. R.K. Kaul, Gauge hierarchy in a supersymmetric model, Phys. Lett. B 109 (1982) 19 [INSPIRE].

    ADS  Google Scholar 

  8. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the scale of unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].

    ADS  Google Scholar 

  9. M. Einhorn and D. Jones, The weak mixing angle and unification mass in supersymmetric SU(5), Nucl. Phys. B 196 (1982) 475 [INSPIRE].

    Article  ADS  Google Scholar 

  10. W.J. Marciano and G. Senjanović, Predictions of supersymmetric grand unified theories, Phys. Rev. D 25 (1982) 3092 [INSPIRE].

    ADS  Google Scholar 

  11. U. Amaldi, W. de Boer and H. Furstenau, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP, Phys. Lett. B 260 (1991) 447 [INSPIRE].

    ADS  Google Scholar 

  12. J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].

    ADS  Google Scholar 

  13. P. Langacker and M.-x. Luo, Implications of precision electroweak experiments for M t , ρ 0, sin2 θ W and grand unification, Phys. Rev. D 44 (1991) 817 [INSPIRE].

    ADS  Google Scholar 

  14. R.L. Arnowitt and P. Nath, SUSY mass spectrum in SU(5) supergravity grand unification, Phys. Rev. Lett. 69 (1992) 725 [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].

    Article  ADS  Google Scholar 

  16. I. Gogoladze and A. Kobakhidze, Natural suppression of D = 5 operator induced proton decay in supersymmetric grand unified theories, Phys. Atom. Nucl. 60 (1997) 126 [Yad. Fiz. 60N1 (1997) 136] [hep-ph/9610389] [INSPIRE].

    ADS  Google Scholar 

  17. Z. Berezhiani, Z. Tavartkiladze and M. Vysotsky, D = 5 operators in SUSY GUT: Fermion masses versus proton decay, hep-ph/9809301 [INSPIRE].

  18. H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [INSPIRE].

    ADS  Google Scholar 

  19. B. Bajc, P. Fileviez Perez and G. Senjanović, Proton decay in minimal supersymmetric SU(5), Phys. Rev. D 66 (2002) 075005 [hep-ph/0204311] [INSPIRE].

    ADS  Google Scholar 

  20. B. Bajc, P. Fileviez Perez and G. Senjanović, Minimal supersymmetric SU(5) theory and proton decay: Where do we stand?, hep-ph/0210374 [INSPIRE].

  21. Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Altarelli and F. Feruglio, SU(5) grand unification in extra dimensions and proton decay, Phys. Lett. B 511 (2001) 257 [hep-ph/0102301] [INSPIRE].

    ADS  Google Scholar 

  23. L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].

    ADS  Google Scholar 

  24. A. Hebecker and J. March-Russell, A Minimal S 1/(Z(2) × Z′(2)) orbifold GUT, Nucl. Phys. B 613 (2001) 3 [hep-ph/0106166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. A.B. Kobakhidze, Proton stability in TeV scale GUTs, Phys. Lett. B 514 (2001) 131 [hep-ph/0102323] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. S. Raby, Searching for the standard model in the string landscape: SUSY GUTs, Rept. Prog. Phys. 74 (2011) 036901.

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Polonsky and A. Pomarol, Nonuniversal GUT corrections to the soft terms and their implications in supergravity models, Phys. Rev. D 51 (1995) 6532 [hep-ph/9410231] [INSPIRE].

    ADS  Google Scholar 

  28. H. Baer, M.A. Diaz, P. Quintana and X. Tata, Impact of physical principles at very high-energy scales on the superparticle mass spectrum, JHEP 04 (2000) 016 [hep-ph/0002245] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Tevatron Electroweak Working Group and CDF and D0 Collaboration collaboration, A Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0803.1683 [INSPIRE].

  30. B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [INSPIRE].

    ADS  Google Scholar 

  31. B. Ananthanarayan, G. Lazarides and Q. Shafi, Radiative electroweak breaking and sparticle spectroscopy with tan β ≃ m t /m b , Phys. Lett. B 300 (1993) 245 [INSPIRE].

    ADS  Google Scholar 

  32. Q. Shafi and B. Ananthanarayan, Will LEP-2 narrowly miss the Weinberg-Salam Higgs boson?, Trieste HEP Cosmol. 1991 (1991) 233.

    Google Scholar 

  33. G.W. Anderson, S. Raby, S. Dimopoulos and L.J. Hall, Precise predictions for m t , V cb and tan β, Phys. Rev. D 47 (1993) 3702 [hep-ph/9209250] [INSPIRE].

    ADS  Google Scholar 

  34. G. Anderson, S. Raby, S. Dimopoulos, L. Hall and G. Starkman, A systematic SO(10) operator analysis for fermion masses, Phys. Rev. D 49 (1994) 3660 [hep-ph/9308333] [INSPIRE].

    ADS  Google Scholar 

  35. V.D. Barger, M. Berger and P. Ohmann, The supersymmetric particle spectrum, Phys. Rev. D 49 (1994) 4908 [hep-ph/9311269] [INSPIRE].

    ADS  Google Scholar 

  36. B. Ananthanarayan, Q. Shafi and X. Wang, Improved predictions for top quark, lightest supersymmetric particle and Higgs scalar masses, Phys. Rev. D 50 (1994) 5980 [hep-ph/9311225] [INSPIRE].

    ADS  Google Scholar 

  37. R. Rattazzi and U. Sarid, The unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [INSPIRE].

    ADS  Google Scholar 

  38. T. Blažek, M.S. Carena, S. Raby and C.E. Wagner, A global χ 2 analysis of electroweak data in SO(10) SUSY GUTs, Phys. Rev. D 56 (1997) 6919 [hep-ph/9611217] [INSPIRE].

    ADS  Google Scholar 

  39. T. Blažek and S. Raby, Supersymmetric grand unified theories and global fits to low-energy data, Phys. Lett. B 392 (1997) 371 [hep-ph/9611319] [INSPIRE].

    ADS  Google Scholar 

  40. T. Blažek and S. Raby, bsγ with large tan beta in MSSM analysis constrained by a realistic SO(10) model, Phys. Rev. D 59 (1999) 095002 [hep-ph/9712257] [INSPIRE].

    ADS  Google Scholar 

  41. T. Blažek, S. Raby and K. Tobe, Neutrino oscillations in a predictive SUSY GUT, Phys. Rev. D 60 (1999) 113001 [hep-ph/9903340] [INSPIRE].

    ADS  Google Scholar 

  42. T. Blažek, S. Raby and K. Tobe, Neutrino oscillations in an SO(10) SUSY GUT with U(2) ×U(2)n family symmetry, Phys. Rev. D 62 (2000) 055001 [hep-ph/9912482] [INSPIRE].

    ADS  Google Scholar 

  43. S. Profumo, Neutralino dark matter, bτ Yukawa unification and nonuniversal sfermion masses, Phys. Rev. D 68 (2003) 015006 [hep-ph/0304071] [INSPIRE].

    ADS  Google Scholar 

  44. C. Pallis, bτ unification with gaugino and sfermion mass nonuniversality, Nucl. Phys. B 678 (2004) 398 [hep-ph/0304047] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Gomez, G. Lazarides and C. Pallis, Supersymmetric cold dark matter with Yukawa unification, Phys. Rev. D 61 (2000) 123512 [hep-ph/9907261] [INSPIRE].

    ADS  Google Scholar 

  46. M. Gomez, G. Lazarides and C. Pallis, Yukawa quasi-unification, Nucl. Phys. B 638 (2002) 165 [hep-ph/0203131] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Gomez, G. Lazarides and C. Pallis, On Yukawa quasiunification with μ less than 0, Phys. Rev. D 67 (2003) 097701 [hep-ph/0301064] [INSPIRE].

    ADS  Google Scholar 

  48. U. Chattopadhyay, A. Corsetti and P. Nath, Supersymmetric dark matter and Yukawa unification, Phys. Rev. D 66 (2002) 035003 [hep-ph/0201001] [INSPIRE].

    ADS  Google Scholar 

  49. M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, WMAP dark matter constraints and Yukawa unification in SUGRA models with CP phases, Phys. Rev. D 72 (2005) 095008 [hep-ph/0506243] [INSPIRE].

    ADS  Google Scholar 

  50. H. Baer and J. Ferrandis, Supersymmetric SO(10) GUT models with Yukawa unification and a positive mu term, Phys. Rev. Lett. 87 (2001) 211803 [hep-ph/0106352] [INSPIRE].

    Article  ADS  Google Scholar 

  51. T. Blažek, R. Dermisek and S. Raby, Predictions for Higgs and supersymmetry spectra from SO(10) Yukawa unification with μ greater than 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Blažek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [INSPIRE].

    ADS  Google Scholar 

  53. D. Auto et al., Yukawa coupling unification in supersymmetric models, JHEP 06 (2003) 023 [hep-ph/0302155] [INSPIRE].

    Article  ADS  Google Scholar 

  54. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [INSPIRE].

    Article  ADS  Google Scholar 

  55. J. Ellis, A. Mustafayev and K.A. Olive, What if Supersymmetry Breaking Unifies beyond the GUT Scale?, Eur. Phys. J. C 69 (2010) 201 [arXiv:1003.3677] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Ellis, A. Mustafayev and K.A. Olive, Constrained Supersymmetric Flipped SU(5) GUT Phenomenology, Eur. Phys. J. C 71 (2011) 1689 [arXiv:1103.5140] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Schmaltz and W. Skiba, Minimal gaugino mediation, Phys. Rev. D 62 (2000) 095005 [hep-ph/0001172] [INSPIRE].

    ADS  Google Scholar 

  58. M. Schmaltz and W. Skiba, The superpartner spectrum of gaugino mediation, Phys. Rev. D 62 (2000) 095004 [hep-ph/0004210] [INSPIRE].

    ADS  Google Scholar 

  59. H. Baer, A. Belyaev, T. Krupovnickas and X. Tata, The reach of the Fermilab Tevatron and CERN LHC for gaugino mediated SUSY breaking models, Phys. Rev. D 65 (2002) 075024 [hep-ph/0110270] [INSPIRE].

    ADS  Google Scholar 

  60. J. Ellis, A. Mustafayev and K.A. Olive, Resurrecting no-scale supergravity phenomenology, Eur. Phys. J. C 69 (2010) 219 [arXiv:1004.5399] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J.L. Feng, C.F. Kolda and N. Polonsky, Solving the supersymmetric flavor problem with radiatively generated mass hierarchies, Nucl. Phys. B 546 (1999) 3

    Article  ADS  Google Scholar 

  62. J. Bagger, J.L. Feng and N. Polonsky, Naturally heavy scalars in supersymmetric grand unified theories, Nucl. Phys. B 563 (1999) 3 [hep-ph/9905292] [INSPIRE].

    Article  ADS  Google Scholar 

  63. J.A. Bagger, J.L. Feng, N. Polonsky and R.-J. Zhang, Superheavy supersymmetry from scalar mass: a parameter fixed points, Phys. Lett. B 473 (2000) 264 [hep-ph/9911255] [INSPIRE]. [hep-ph/9911255] [INSPIRE].

    ADS  Google Scholar 

  64. H. Baer, P. Mercadante and X. Tata, Calculable sparticle masses with radiatively driven inverted mass hierarchy, Phys. Lett. B 475 (2000) 289 [hep-ph/9912494] [INSPIRE].

    ADS  Google Scholar 

  65. H. Baer et al., Aspects of supersymmetric models with a radiatively driven inverted mass hierarchy, Phys. Rev. D 64 (2001) 015002 [hep-ph/0102156] [INSPIRE].

    ADS  Google Scholar 

  66. H. Baer, S. Kraml and S. Sekmen, Is ’just-so’ Higgs splitting needed for t − b − τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [INSPIRE].

    Article  ADS  Google Scholar 

  67. R. Rattazzi and U. Sarid, The Unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [INSPIRE].

    ADS  Google Scholar 

  68. H. Murayama, M. Olechowski and S. Pokorski, Viable t − b − τ Yukawa unification in SUSY SO(10), Phys. Lett. B 371 (1996) 57 [hep-ph/9510327] [INSPIRE].

    ADS  Google Scholar 

  69. H. Baer, S. Raza and Q. Shafi, A heavier gluino from t − b − τ Yukawa-unified SUSY, arXiv:1201.5668 [INSPIRE].

  70. ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7 \) TeV in final states with missing transverse momentum and b-jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].

    ADS  Google Scholar 

  71. H. Baer, V. Barger, A. Lessa and X. Tata, Capability of LHC to discover supersymmetry with \( \sqrt {s} = 7 \) TeV and 1fb −1, JHEP 06 (2010) 102 [arXiv:1004.3594] [INSPIRE].

    Article  ADS  Google Scholar 

  72. H. Baer, V. Barger, A. Lessa and X. Tata, LHC discovery potential for supersymmetry with \( \sqrt {s} = 7 \) TeV and 5-30fb −1, arXiv:1112.3044 [INSPIRE].

  73. I. Gogoladze, R. Khalid and Q. Shafi, Yukawa Unification and Neutralino Dark Matter in SU(4) c × SU(2) L × SU(2) R , Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [INSPIRE].

    ADS  Google Scholar 

  74. I. Gogoladze, R. Khalid and Q. Shafi, Coannihilation Scenarios and Particle Spectroscopy in SU(4) c × SU(2) L × SU(2) R , Phys. Rev. D 80 (2009) 095016 [arXiv:0908.0731] [INSPIRE].

    ADS  Google Scholar 

  75. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t − b − τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, JHEP 12 (2010) 055 [arXiv:1008.2765] [INSPIRE].

    Article  ADS  Google Scholar 

  76. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, Higgs and Sparticle Spectroscopy with Gauge-Yukawa Unification, JHEP 06 (2011) 117 [arXiv:1102.0013] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].

  78. S. Profumo and C. Yaguna, Gluino coannihilations and heavy bino dark matter, Phys. Rev. D 69 (2004) 115009 [hep-ph/0402208] [INSPIRE].

    ADS  Google Scholar 

  79. D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation and LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [INSPIRE].

    ADS  Google Scholar 

  80. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E T , JHEP 02 (2010) 055 [arXiv:0911.4739] [INSPIRE].

    Article  ADS  Google Scholar 

  81. D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation and LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [INSPIRE].

    ADS  Google Scholar 

  82. M. Adeel Ajaib, T. Li, Q. Shafi and K. Wang, NLSP Gluino search at the Tevatron and early LHC, JHEP 01 (2011) 028 [arXiv:1011.5518] [INSPIRE].

    Article  ADS  Google Scholar 

  83. Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE]

    ADS  Google Scholar 

  84. I. Gogoladze, Q. Shafi and C.S. Un, SO(10) Yukawa Unification with μ < 0, Phys. Lett. B 704 (2011) 201 [arXiv:1107.1228] [INSPIRE].

    ADS  Google Scholar 

  85. I. Gogoladze, Q. Shafi and C.S. Un, Higgs Boson Mass from t − b − τ Yukawa Unification, arXiv:1112.2206 [INSPIRE].

  86. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, \( \overline p p \) and e + e reactions, hep-ph/0312045 [INSPIRE].

  87. H. Baer, C.-H. Chen, R.B. Munroe, F.E. Paige and X. Tata, Multichannel search for minimal supergravity at \( p\overline p \) and e + e colliders, Phys. Rev. D 51 (1995) 1046 [hep-ph/9408265] [INSPIRE].

    ADS  Google Scholar 

  88. H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [INSPIRE].

    ADS  Google Scholar 

  89. J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].

    Article  ADS  Google Scholar 

  90. Y. Yamada, SUSY and GUT threshold effects in SUSY SU(5) models, Z. Phys. C 60 (1993) 83 [INSPIRE].

    ADS  Google Scholar 

  91. J. Chkareuli and I. Gogoladze, Unification picture in minimal supersymmetric SU(5) model with string remnants, Phys. Rev. D 58 (1998) 055011 [hep-ph/9803335] [INSPIRE].

    ADS  Google Scholar 

  92. S.P. Martin and M.T. Vaughn, Two loop renormalization group equations for soft supersymmetry breaking couplings, Phys. Rev. D 50 (1994) 2282 [Erratum ibid. D 78 (2008) 039903] [hep-ph/9311340] [INSPIRE].

  93. H.E. Haber and R. Hempfling, The renormalization group improved Higgs sector of the minimal supersymmetric model, Phys. Rev. D 48 (1993) 4280 [hep-ph/9307201] [INSPIRE].

    ADS  Google Scholar 

  94. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

    Article  ADS  Google Scholar 

  95. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

    ADS  Google Scholar 

  96. G. Bélanger, S. Kraml and A. Pukhov, Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP, Phys. Rev. D 72 (2005) 015003 [hep-ph/0502079] [INSPIRE].

    ADS  Google Scholar 

  97. G. Bélanger, F. Boudjema, A. Pukhov and R. Singh, Constraining the MSSM with universal gaugino masses and implication for searches at the LHC, JHEP 11 (2009) 026 [arXiv:0906.5048] [INSPIRE].

    Article  Google Scholar 

  98. WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  99. K. Babu and C.F. Kolda, Higgs mediated B 0 → μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].

    Article  ADS  Google Scholar 

  100. A. Dedes, H.K. Dreiner and U. Nierste, Correlation of B s → μ + μ and (g-2) (μ) in minimal supergravity, Phys. Rev. Lett. 87 (2001) 251804 [hep-ph/0108037] [INSPIRE].

    Article  ADS  Google Scholar 

  101. J. Mizukoshi, X. Tata and Y. Wang, Higgs mediated leptonic decays of B s and B d mesons as probes of supersymmetry, Phys. Rev. D 66 (2002) 115003 [hep-ph/0208078] [INSPIRE].

    ADS  Google Scholar 

  102. H. Baer, M. Brhlik, C.-h. Chen and X. Tata, Signals for the minimal gauge mediated supersymmetry breaking model at the Fermilab Tevatron collider, Phys. Rev. D 55 (1997) 4463 [hep-ph/9610358] [INSPIRE].

    ADS  Google Scholar 

  103. H. Baer, M. Brhlik, D. Castano and X. Tata, b → sγ constraints on the minimal supergravity model with large tan β, Phys. Rev. D 58 (1998) 015007 [hep-ph/9712305] [INSPIRE].

    ADS  Google Scholar 

  104. D. Eriksson, F. Mahmoudi and O. Stal, Charged Higgs bosons in Minimal Supersymmetry: Updated constraints and experimental prospects, JHEP 11 (2008) 035 [arXiv:0808.3551] [INSPIRE].

    Article  ADS  Google Scholar 

  105. CMS, LHCb collaborations, Search for the rare decay \( B_s^0 \to {\mu^{ + }}{\mu^{ - }} \) at the LHC with the CMS and LHCb experiments Combination of LHC results of the search for B s → μ + μ decays, PAS-BPH-11-019.

  106. CMS, LHCb collaborations, Search for the rare decay \( B_s^0 \to {\mu^{ + }}{\mu^{ - }} \) at the LHC with the CMS and LHCb experiments Combination of LHC results of the search for B s → μ + μ decays, LHCb-CONF-2011-047.

  107. Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton Properties, arXiv:1010.1589 [INSPIRE].

  108. I. Gogoladze, S. Raza and Q. Shafi, Light stop from b − τ Yukawa unification, Phys. Lett. B 706 (2012) 345 [arXiv:1104.3566] [INSPIRE].

    ADS  Google Scholar 

  109. W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: A Go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [INSPIRE].

    ADS  Google Scholar 

  110. ATLAS collaboration, F. Gianotti, Update on the Standard Model Higgs searches in ATLAS, talk at CERN public seminar, CERN, Geneva Switzerland, 13 Dec. 2011.

  111. ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb −1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  112. CMS collaboration, G. Tonelli, Update on the Standard Model Higgs searches in CMS, talk at CERN public seminar, CERN, Geneva Switzerland, 13 Dec. 2011.

  113. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, arXiv:1112.3017 [INSPIRE].

  114. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  115. H. Baer, C. Balázs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev. D 64 (2001) 035004 [hep-ph/0103280] [INSPIRE].

    ADS  Google Scholar 

  116. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g − 2 and to \( \alpha \left( {M_Z^2} \right) \), Eur. Phys. J. C 71 (2011) 1515 [arXiv:1010.4180] [INSPIRE].

    ADS  Google Scholar 

  117. H. Baer, X. Tata and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D 45 (1992) 142 [INSPIRE].

    ADS  Google Scholar 

  118. H. Baer, C.-H. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider: multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [INSPIRE].

    ADS  Google Scholar 

  119. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN large hadron collider. 2: Multi-lepton channels, Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [INSPIRE].

    ADS  Google Scholar 

  120. H. Baer, C.-h. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [INSPIRE].

    ADS  Google Scholar 

  121. H. Baer, C. Balázs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, b → sγ and a(μ) in the mSUGRA model, JHEP 06 (2003) 054 [hep-ph/0304303] [INSPIRE].

    Article  ADS  Google Scholar 

  122. S. Abdullin and F. Charles, Search for SUSY in (leptons +) jets + E(T)(miss) final states, Nucl. Phys. B 547 (1999) 60 [hep-ph/9811402] [INSPIRE].

    Article  ADS  Google Scholar 

  123. CMS collaboration, S. Abdullin et al., Discovery potential for supersymmetry in CMS, J. Phys. G 28 (2002) 469 [hep-ph/9806366] [INSPIRE].

    ADS  Google Scholar 

  124. B. Allanach, J. Hetherington, M.A. Parker and B. Webber, Naturalness reach of the large hadron collider in minimal supergravity, JHEP 08 (2000) 017 [hep-ph/0005186] [INSPIRE].

    ADS  Google Scholar 

  125. H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = 10TeV \) and 14 TeV without and with missing E T , JHEP 09 (2009) 063 [arXiv:0907.1922] [INSPIRE].

    Article  ADS  Google Scholar 

  126. H. Baer, S. Kraml, S. Sekmen and H. Summy, Prospects for Yukawa Unified SO(10) SUSY GUTs at the CERN LHC, JHEP 10 (2008) 079 [arXiv:0809.0710] [INSPIRE].

    Article  ADS  Google Scholar 

  127. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E T , JHEP 02 (2010) 055 [arXiv:0911.4739] [INSPIRE].

    Article  ADS  Google Scholar 

  128. H. Baer, V. Barger, A. Lessa, W. Sreethawong and X. Tata, Wh plus missing-E T signature from gaugino pair production at the LHC, arXiv:1201.2949 [INSPIRE].

  129. R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz De Austri, Dark matter and B s → μ + μ with minimal SO(10) soft SUSY breaking, JHEP 04 (2003) 037 [hep-ph/0304101] [INSPIRE].

    Article  ADS  Google Scholar 

  130. R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz de Austri, Dark matter and B s → μ + μ with minimal SO(10) soft SUSY breaking II, JHEP 09 (2005) 029 [hep-ph/0507233] [INSPIRE].

    Article  ADS  Google Scholar 

  131. S. Kraml, private communication.

  132. H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with coannihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [INSPIRE].

    Article  ADS  Google Scholar 

  133. I. Gogoladze, S. Raza and Q. Shafi, Neutralino-Sbottom Coannihilation in SU(5), arXiv:1111.6299 [INSPIRE].

  134. H. Baer and H. Summy, SO(10) SUSY GUTs, the gravitino problem, non-thermal leptogenesis and axino dark matter, Phys. Lett. B 666 (2008) 5 [arXiv:0803.0510] [INSPIRE].

    ADS  Google Scholar 

  135. H. Baer, M. Haider, S. Kraml, S. Sekmen and H. Summy, Cosmological consequences of Yukawa-unified SUSY with mixed axion/axino cold and warm dark matter, JCAP 02 (2009) 002 [arXiv:0812.2693] [INSPIRE].

    Article  ADS  Google Scholar 

  136. L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [INSPIRE].

    Article  ADS  Google Scholar 

  137. L. Covi, H.-B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, JHEP 05 (2001) 033 [hep-ph/0101009] [INSPIRE].

    Article  ADS  Google Scholar 

  138. H. Baer, A.D. Box and H. Summy, Mainly axion cold dark matter in the minimal supergravity model, JHEP 08 (2009) 080 [arXiv:0906.2595] [INSPIRE].

    Article  ADS  Google Scholar 

  139. G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Relaxing the cosmological bound on axions, Phys. Lett. B 192 (1987) 323 [INSPIRE].

    ADS  Google Scholar 

  140. G. Lazarides, R.K. Schaefer, D. Seckel and Q. Shafi, Dilution of cosmological axions by entropy production, Nucl. Phys. B 346 (1990) 193 [INSPIRE].

    Article  ADS  Google Scholar 

  141. J. McDonald, WIMP densities in decaying particle dominated cosmology, Phys. Rev. D 43 (1991) 1063 [INSPIRE].

    ADS  Google Scholar 

  142. C. Pallis, Massive particle decay and cold dark matter abundance, Astropart. Phys. 21 (2004) 689 [hep-ph/0402033] [INSPIRE].

    Article  ADS  Google Scholar 

  143. K.-Y. Choi, J.E. Kim, H.M. Lee and O. Seto, Neutralino dark matter from heavy axino decay, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491] [INSPIRE].

    ADS  Google Scholar 

  144. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Thermal leptogenesis and the gravitino problem in the Asaka-Yanagida axion/axino dark matter scenario, JCAP 04 (2011) 039 [arXiv:1012.3769] [INSPIRE].

    Article  ADS  Google Scholar 

  145. H. Baer and A. Lessa, Some necessary conditions for allowing the PQ scale as high as M GUT in SUSY models with an axino or neutralino LSP, JHEP 06 (2011) 027 [arXiv:1104.4807] [INSPIRE].

    Article  ADS  Google Scholar 

  146. H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].

    Article  ADS  Google Scholar 

  147. H. Baer, A. Lessa and W. Sreethawong, Coupled Boltzmann calculation of mixed axion/neutralino cold dark matter production in the early universe, JCAP 01 (2012) 036 [arXiv:1110.2491] [INSPIRE].

    Article  ADS  Google Scholar 

  148. T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

    Article  ADS  Google Scholar 

  149. G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

    ADS  Google Scholar 

  150. G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The Effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].

    ADS  Google Scholar 

  151. G.B. Gelmini, P. Gondolo, A. Soldatenko and C. Yaguna, Direct detection of neutralino dark mattter in non-standard cosmologies, Phys. Rev. D 76 (2007) 015010 [hep-ph/0610379] [INSPIRE].

    ADS  Google Scholar 

  152. B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the Electroweak Scale and Stabilizing Moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  153. B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: An M-theory motivated model of Particle Physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].

    ADS  Google Scholar 

  154. B.S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao, et al., Non-thermal Dark Matter and the Moduli Problem in String Frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Baer.

Additional information

ArXiv ePrint: 1201.4412

On leave of absence from: Andronikashvili Institute of Physics, GAS, Tbilisi, Georgia. (Ilia Gogoladze)

On study leave from: Department of Physics, FUUAST, Islamabad, Pakistan. (Shabbar Raza)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baer, H., Gogoladze, I., Mustafayev, A. et al. Sparticle mass spectra from SU(5) SUSY GUT models with bτ Yukawa coupling unification. J. High Energ. Phys. 2012, 47 (2012). https://doi.org/10.1007/JHEP03(2012)047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)047

Keywords

Navigation