Skip to main content
Log in

A predictive Yukawa unified SO(10) model: Higgs and sparticle masses

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We revisit a class of supersymmetric SO(10) models with t-b-τ Yukawa coupling unification condition, with emphasis on the prediction of the Higgs mass. We discuss qualitative features in this model that lead to a Higgs mass prediction close to 125 GeV. We show this with two distinct computing packages, Isajet and SuSpect, and also show that they yield similar global features in the parameter space of this model. We find that t-b-τ Yukawa coupling unification prefers values of the CP-odd Higgs mass m A to be around 600–800 GeV, with all colored sparticle masses above 3 TeV. We also briefly discuss prospects for testing this scenario with the ongoing and planned direct dark matter detection experiments. In this class of models with t-b-τ Yukawa unification, the neutralino dark matter particle is heavy (\( {m_{{\widetilde{\chi}_1^0}}} \) ≳ 400 GeV), which coannihilates with a stau to yield 1 the correct relic abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [INSPIRE].

    ADS  Google Scholar 

  2. S. Gogolev et al., Total cross-section of the reaction π + d → pp at pion energies 26 MeV to 40 MeV, Phys. Lett. B 300 (1993) 24 [INSPIRE].

    ADS  Google Scholar 

  3. Q. Shafi and B. Ananthanarayan, Will LEP-2 narrowly miss the Weinberg-Salam Higgs boson?, in Trieste HEP Cosmol., Trieste Italy (1991), pg. 233 [INSPIRE].

  4. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

    ADS  Google Scholar 

  5. B. Ananthanarayan, Q. Shafi and X. Wang, Improved predictions for top quark, lightest supersymmetric particle and Higgs scalar masses, Phys. Rev. D 50 (1994) 5980 [hep-ph/9311225] [INSPIRE].

    ADS  Google Scholar 

  6. R. Rattazzi and U. Sarid, The unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [INSPIRE].

    ADS  Google Scholar 

  7. T. Blazek, M.S. Carena, S. Raby and C.E. Wagner, A global χ 2 analysis of electroweak data in SO(10) SUSY GUTs, Phys. Rev. D 56 (1997) 6919 [hep-ph/9611217] [INSPIRE].

    ADS  Google Scholar 

  8. J. Chkareuli and I. Gogoladze, Unification picture in minimal supersymmetric SU(5) model with string remnants, Phys. Rev. D 58 (1998) 055011 [hep-ph/9803335] [INSPIRE].

    ADS  Google Scholar 

  9. T. Blazek, S. Raby and K. Tobe, Neutrino oscillations in an SO(10) SUSY GUT with U(2) × U(1)n family symmetry, Phys. Rev. D 62 (2000) 055001 [hep-ph/9912482] [INSPIRE].

    ADS  Google Scholar 

  10. H. Baer et al., Yukawa unified supersymmetric SO(10) model: cosmology, rare decays and collider searches, Phys. Rev. D 63 (2000) 015007 [hep-ph/0005027] [INSPIRE].

    ADS  Google Scholar 

  11. C. Balázs and R. Dermisek, Yukawa coupling unification and nonuniversal gaugino mediation of supersymmetry breaking, JHEP 06 (2003) 024 [hep-ph/0303161] [INSPIRE].

    Article  ADS  Google Scholar 

  12. U. Chattopadhyay, A. Corsetti and P. Nath, Supersymmetric dark matter and Yukawa unification, Phys. Rev. D 66 (2002) 035003 [hep-ph/0201001] [INSPIRE].

    ADS  Google Scholar 

  13. T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and supersymmetry spectra from SO(10) Yukawa unification with μ greater than 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, WMAP dark matter constraints and Yukawa unification in SUGRA models with CP phases, Phys. Rev. D 72 (2005) 095008 [hep-ph/0506243] [INSPIRE].

    ADS  Google Scholar 

  15. K. Tobe and J.D. Wells, Revisiting top bottom tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [INSPIRE].

    Article  ADS  Google Scholar 

  16. I. Gogoladze, Y. Mimura and S. Nandi, Unification of gauge, Higgs and matter in extra dimensions, Phys. Lett. B 562 (2003) 307 [hep-ph/0302176] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: a go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [INSPIRE].

    ADS  Google Scholar 

  18. S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [INSPIRE].

    ADS  Google Scholar 

  19. H. Baer, S. Kraml and S. Sekmen, Isjust-soHiggs splitting needed for t-b-τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [INSPIRE].

    ADS  Google Scholar 

  21. K. Choi, D. Guadagnoli, S.H. Im and C.B. Park, Sparticle masses from transverse-mass kinks at the LHC: the case of Yukawa-unified SUSY GUTs, JHEP 10 (2010) 025 [arXiv:1005.0618] [INSPIRE].

    ADS  Google Scholar 

  22. S. Antusch, L. Calibbi, V. Maurer, M. Monaco and M. Spinrath, Naturalness and GUT scale Yukawa coupling ratios in the CMSSM, Phys. Rev. D 85 (2012) 035025 [arXiv:1111.6547] [INSPIRE].

    ADS  Google Scholar 

  23. J.S. Gainer, R. Huo and C.E. Wagner, An alternative Yukawa unified SUSY scenario, JHEP 03 (2012) 097 [arXiv:1111.3639] [INSPIRE].

    Article  ADS  Google Scholar 

  24. H. Baer, S. Raza and Q. Shafi, A heavier gluino from t-b-τ Yukawa-unified SUSY, Phys. Lett. B 712 (2012) 250 [arXiv:1201.5668] [INSPIRE].

    ADS  Google Scholar 

  25. I. Gogoladze, Q. Shafi and C.S. Un, 125 GeV Higgs boson from t-b-τ Yukawa unification, JHEP 07 (2012) 055 [arXiv:1203.6082] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Elor, L.J. Hall, D. Pinner and J.T. Ruderman, Yukawa unification and the superpartner mass scale, JHEP 10 (2012) 111 [arXiv:1206.5301] [INSPIRE].

    Article  ADS  Google Scholar 

  27. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t-b-τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, JHEP 12 (2010) 055 [arXiv:1008.2765] [INSPIRE].

    Article  ADS  Google Scholar 

  28. I. Gogoladze, Q. Shafi and C.S. Un, SO(10) Yukawa unification with μ < 0, Phys. Lett. B 704 (2011) 201 [arXiv:1107.1228] [INSPIRE].

    ADS  Google Scholar 

  29. M. Badziak, M. Olechowski and S. Pokorski, Yukawa unification in SO(10) with light sparticle spectrum, JHEP 08 (2011) 147 [arXiv:1107.2764] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Badziak, Yukawa unification in SUSY SO(10) in light of the LHC Higgs data, Mod. Phys. Lett. A 27 (2012) 1230020 [arXiv:1205.6232] [INSPIRE].

    ADS  Google Scholar 

  31. A. Anandakrishnan and S. Raby, Yukawa unification predictions with effectivemiragemediation, arXiv:1303.5125 [INSPIRE].

  32. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  33. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  34. I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, JHEP 08 (2012) 028 [arXiv:1112.2206] [INSPIRE].

    Article  ADS  Google Scholar 

  35. LHCb collaboration, First evidence for the decay \( B_S^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  36. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S.R. Choudhury and N. Gaur, Dileptonic decay of B s meson in SUSY models with large tan β, Phys. Lett. B 451 (1999) 86 [hep-ph/9810307] [INSPIRE].

    ADS  Google Scholar 

  38. K. Babu and C.F. Kolda, Higgs mediated B 0 → μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].

    Article  ADS  Google Scholar 

  39. CMS collaboration, Search for neutral Higgs bosons decaying to τ pairs in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].

    ADS  Google Scholar 

  40. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \( \sqrt{s}=7 \) TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].

    ADS  Google Scholar 

  41. CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].

    ADS  Google Scholar 

  42. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  43. T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979), pg. 95 [INSPIRE].

  44. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen et al. eds., North Holland, Amsterdam The Netherlands (1979), pg. 315 [arXiv:1306.4669] [INSPIRE].

  45. S.L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, M. Lévy et al. eds., Plenum Press, New York U.S.A. (1980), pg. 687 [INSPIRE].

  46. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  48. G. Lazarides and Q. Shafi, Origin of matter in the inflationary cosmology, Phys. Lett. B 258 (1991) 305 [INSPIRE].

    ADS  Google Scholar 

  49. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    ADS  Google Scholar 

  51. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].

    Article  ADS  Google Scholar 

  52. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  53. P. Langacker, Grand unified theories and proton decay, Phys. Rept. 72 (1981) 185 [INSPIRE].

    Article  ADS  Google Scholar 

  54. K. Babu and R. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].

    Article  ADS  Google Scholar 

  55. E. Witten, Neutrino masses in the minimal O(10) theory, Phys. Lett. B 91 (1980) 81 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. S.M. Barr, Light fermion mass hierarchy and grand unification, Phys. Rev. D 21 (1980) 1424 [INSPIRE].

    ADS  Google Scholar 

  57. Y. Nomura and T. Yanagida, Bimaximal neutrino mixing in SO(10)GUT, Phys. Rev. D 59 (1999) 017303 [hep-ph/9807325] [INSPIRE].

    ADS  Google Scholar 

  58. M. Frigerio, P. Hosteins, S. Lavignac and A. Romanino, A new, direct link between the baryon asymmetry and neutrino masses, Nucl. Phys. B 806 (2009) 84 [arXiv:0804.0801] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Barr, Radiative fermion mass hierarchy in a non-supersymmetric unified theory, Phys. Rev. D 76 (2007) 105024 [arXiv:0706.1490] [INSPIRE].

    ADS  Google Scholar 

  60. M. Malinsky, Quark and lepton masses and mixing in SO(10) with a GUT-scale vector matter, Phys. Rev. D 77 (2008) 055016 [arXiv:0710.0581] [INSPIRE].

    ADS  Google Scholar 

  61. M. Heinze and M. Malinsky, Flavour structure of supersymmetric SO(10) GUTs with extended matter sector, Phys. Rev. D 83 (2011) 035018 [arXiv:1008.4813] [INSPIRE].

    ADS  Google Scholar 

  62. K. Babu, B. Bajc and Z. Tavartkiladze, Realistic fermion masses and nucleon decay rates in SUSY SU(5) with vector-like matter, Phys. Rev. D 86 (2012) 075005 [arXiv:1207.6388] [INSPIRE].

    ADS  Google Scholar 

  63. G. Anderson, S. Raby, S. Dimopoulos, L. Hall and G. Starkman, A systematic SO(10) operator analysis for fermion masses, Phys. Rev. D 49 (1994) 3660 [hep-ph/9308333] [INSPIRE].

    ADS  Google Scholar 

  64. A.S. Joshipura and K.M. Patel, Yukawa coupling unification in SO(10) with positive μ and a heavier gluino, Phys. Rev. D 86 (2012) 035019 [arXiv:1206.3910] [INSPIRE].

    ADS  Google Scholar 

  65. H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].

    ADS  Google Scholar 

  66. S. Dimopoulos and F. Wilczek, Incomplete multiplets in supersymmetric unified models, Print-81-0600, Santa Barbara U.S.A. (1981) [INSPIRE].

  67. K. Babu and S.M. Barr, Natural suppression of Higgsino mediated proton decay in supersymmetric SO(10), Phys. Rev. D 48 (1993) 5354 [hep-ph/9306242] [INSPIRE].

    ADS  Google Scholar 

  68. K. Babu and S.M. Barr, Natural gauge hierarchy in SO(10), Phys. Rev. D 50 (1994) 3529 [hep-ph/9402291] [INSPIRE].

    ADS  Google Scholar 

  69. K. Babu and S.M. Barr, Supersymmetric SO(10) simplified, Phys. Rev. D 51 (1995) 2463 [hep-ph/9409285] [INSPIRE].

    ADS  Google Scholar 

  70. S.M. Barr and S. Raby, Minimal SO(10) unification, Phys. Rev. Lett. 79 (1997) 4748 [hep-ph/9705366] [INSPIRE].

    Article  ADS  Google Scholar 

  71. Z. Berezhiani and Z. Tavartkiladze, More missing VEV mechanism in supersymmetric SO(10) model, Phys. Lett. B 409 (1997) 220 [hep-ph/9612232] [INSPIRE].

    ADS  Google Scholar 

  72. Z. Chacko and R.N. Mohapatra, A new doublet-triplet splitting mechanism for supersymmetric SO(10) and implications for fermion masses, Phys. Rev. Lett. 82 (1999) 2836 [hep-ph/9810315] [INSPIRE].

    Article  ADS  Google Scholar 

  73. K. Babu, J.C. Pati and F. Wilczek, Fermion masses, neutrino oscillations and proton decay in the light of Super-Kamiokande, Nucl. Phys. B 566 (2000) 33 [hep-ph/9812538] [INSPIRE].

    Article  Google Scholar 

  74. N. Maekawa, Neutrino masses, anomalous U(1) gauge symmetry and doublet-triplet splitting, Prog. Theor. Phys. 106 (2001) 401 [hep-ph/0104200] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. B. Kyae and Q. Shafi, Inflation with realistic supersymmetric SO(10), Phys. Rev. D 72 (2005) 063515 [hep-ph/0504044] [INSPIRE].

    ADS  Google Scholar 

  76. M. Albrecht, W. Altmannshofer, A.J. Buras, D. Guadagnoli and D.M. Straub, Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes, JHEP 10 (2007) 055 [arXiv:0707.3954] [INSPIRE].

    Article  ADS  Google Scholar 

  77. K. Babu, J.C. Pati and Z. Tavartkiladze, Constraining proton lifetime in SO(10) with stabilized doublet-triplet splitting, JHEP 06 (2010) 084 [arXiv:1003.2625] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. A. Anandakrishnan, S. Raby and A. Wingerter, Yukawa unification predictions for the LHC, Phys. Rev. D 87 (2013) 055005 [arXiv:1212.0542] [INSPIRE].

    ADS  Google Scholar 

  79. B. Ananthanarayan and P. Pandita, Sparticle mass spectrum in grand unified theories, Int. J. Mod. Phys. A 22 (2007) 3229 [arXiv:0706.2560] [INSPIRE].

    ADS  Google Scholar 

  80. S. Bhattacharya, A. Datta and B. Mukhopadhyaya, Non-universal gaugino masses: a signal-based analysis for the Large Hadron Collider, JHEP 10 (2007) 080 [arXiv:0708.2427] [INSPIRE].

    Article  ADS  Google Scholar 

  81. S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].

    ADS  Google Scholar 

  82. U. Chattopadhyay, D. Das and D. Roy, Mixed neutralino dark matter in nonuniversal gaugino mass models, Phys. Rev. D 79 (2009) 095013 [arXiv:0902.4568] [INSPIRE].

    ADS  Google Scholar 

  83. A. Corsetti and P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models, Phys. Rev. D 64 (2001) 125010 [hep-ph/0003186] [INSPIRE].

    ADS  Google Scholar 

  84. Q. Shafi and C. Wetterich, Modification of GUT predictions in the presence of spontaneous compactification, Phys. Rev. Lett. 52 (1984) 875 [INSPIRE].

    Article  ADS  Google Scholar 

  85. C.T. Hill, Are there significant gravitational corrections to the unification scale?, Phys. Lett. B 135 (1984) 47 [INSPIRE].

    ADS  Google Scholar 

  86. N. Okada, S. Raza and Q. Shafi, Particle spectroscopy of supersymmetric SO(10) with non-universal gaugino masses, Phys. Rev. D 84 (2011) 095018 [arXiv:1107.0941] [INSPIRE].

    ADS  Google Scholar 

  87. Tevatron Electroweak Working Group, CDF and DØ collaborations, Combination of CDF and DØ results on the mass of the top quark, arXiv:0903.2503 [INSPIRE].

  88. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, Higgs and sparticle spectroscopy with gauge-Yukawa unification, JHEP 06 (2011) 117 [arXiv:1102.0013] [INSPIRE].

    Article  ADS  Google Scholar 

  89. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, \( \overline{p}p \) and e+e reactions, hep-ph/0312045 [INSPIRE].

  90. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  91. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  92. B. Allanach, S. Kraml and W. Porod, Theoretical uncertainties in sparticle mass predictions from computational tools, JHEP 03 (2003) 016 [hep-ph/0302102] [INSPIRE].

    Article  ADS  Google Scholar 

  93. H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [INSPIRE].

    ADS  Google Scholar 

  94. H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to focus point supersymmetry: from dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [INSPIRE].

    Article  ADS  Google Scholar 

  95. Particle Data Group Collaboration collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  96. J.L. Leva, A fast normal random number generator, ACM Trans. Math. Softw. 18 (1992) 449.

    Article  MATH  Google Scholar 

  97. J.L. Leva, Algorithm 712. A normal random number generator, ACM Trans. Math. Softw. 18 (1992) 454.

    Article  MATH  Google Scholar 

  98. H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with coannihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [INSPIRE].

    Article  ADS  Google Scholar 

  99. H. Baer, C. Balázs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev. D 64 (2001) 035004 [hep-ph/0103280] [INSPIRE].

    ADS  Google Scholar 

  100. CDF collaboration, T. Aaltonen et al., Search for \( B_s^0\to {\mu^{+}}{\mu^{-}} \) and \( B_d^0\to {\mu^{+}}{\mu^{-}} \) decays with 2 fb−1 of \( p\overline{p} \) collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [INSPIRE].

    Article  ADS  Google Scholar 

  101. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].

  102. Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  103. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

    Article  ADS  Google Scholar 

  104. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [INSPIRE].

    Article  ADS  Google Scholar 

  105. H. Baer, M. Haider, S. Kraml, S. Sekmen and H. Summy, Cosmological consequences of Yukawa-unified SUSY with mixed axion/axino cold and warm dark matter, JCAP 02 (2009) 002 [arXiv:0812.2693] [INSPIRE].

    Article  ADS  Google Scholar 

  106. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].

    ADS  Google Scholar 

  107. I. Gogoladze, R. Khalid and Q. Shafi, Yukawa unification and neutralino dark matter in SU(4)c × SU(2)L × SU(2)R, Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [INSPIRE].

    ADS  Google Scholar 

  108. M. Gomez, G. Lazarides and C. Pallis, Yukawa quasi-unification, Nucl. Phys. B 638 (2002) 165 [hep-ph/0203131] [INSPIRE].

    Article  ADS  Google Scholar 

  109. S. Dar, I. Gogoladze, Q. Shafi and C.S. Un, Sparticle spectroscopy with neutralino dark matter from t-b-τ quasi-Yukawa unification, Phys. Rev. D 84 (2011) 085015 [arXiv:1105.5122] [INSPIRE].

    ADS  Google Scholar 

  110. N. Karagiannakis, G. Lazarides and C. Pallis, CMSSM with Yukawa quasi-unification revisited, Phys. Lett. B 704 (2011) 43 [arXiv:1107.0667] [INSPIRE].

    ADS  Google Scholar 

  111. N. Karagiannakis, G. Lazarides and C. Pallis, Constrained minimal supersymmetric standard model with generalized Yukawa quasi-unification, Phys. Rev. D 87 (2013) 055001 [arXiv:1212.0517] [INSPIRE].

    ADS  Google Scholar 

  112. R. Hempfling, On the fine tuning problem in minimal SO(10) SUSY GUT, Phys. Rev. D 52 (1995) 4106 [hep-ph/9405252] [INSPIRE].

    ADS  Google Scholar 

  113. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  114. Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].

    ADS  Google Scholar 

  115. A. Yamada, Radiative corrections to the Higgs masses in the minimal supersymmetric standard model, Phys. Lett. B 263 (1991) 233 [INSPIRE].

    ADS  Google Scholar 

  116. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    ADS  Google Scholar 

  117. J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].

    ADS  Google Scholar 

  118. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than mZ ?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  119. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  120. S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry, G.L. Kane ed., (1991), pg. 1 [hep-ph/9709356] [INSPIRE].

  121. W. Altmannshofer, M. Carena, N.R. Shah and F. Yu, Indirect probes of the MSSM after the Higgs discovery, JHEP 01 (2013) 160 [arXiv:1211.1976] [INSPIRE].

    Article  ADS  Google Scholar 

  122. H. Baer et al., Post-LHC7 fine-tuning in the mSUGRA/CMSSM model with a 125 GeV Higgs boson, arXiv:1210.3019 [INSPIRE].

  123. I. Gogoladze, F. Nasir and Q. Shafi, Non-universal gaugino masses and natural supersymmetry, Int. J. Mod. Phys. A 28 (2013) 1350046 [arXiv:1212.2593] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Adeel Ajaib.

Additional information

ArXiv ePrint: 1303.6964

On leave of absence from: Andronikashvili Institute of Physics, Tbilisi, Georgia. (Ilia Gogoladze)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajaib, M.A., Gogoladze, I., Shafi, Q. et al. A predictive Yukawa unified SO(10) model: Higgs and sparticle masses. J. High Energ. Phys. 2013, 139 (2013). https://doi.org/10.1007/JHEP07(2013)139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)139

Keywords

Navigation