Skip to main content
Log in

Higgs boson mass from t-b-τ Yukawa unification

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We employ the Yukawa coupling unification condition, y t = y b = y τ at M GUT, inspired by supersymmetric SO(10) models, to estimate the lightest Higgs boson mass as well as masses of the associated squarks and gluino. We employ non-universal soft masses, dictated by SO(10) symmetry, for the gauginos. Furthermore, the soft masses for the two scalar Higgs doublets are set equal at M GUT, and in some examples these are equal to the soft masses for scalars in the matter multiplets. For μ > 0, M 2> 0, where M 2 denotes the SU(2) gaugino mass, essentially perfect t-b-τ Yukawa unification is possible, and it predicts a Higgs mass of 122-124 GeV with a theoretical uncertainty of about ±3 GeV. The corresponding gluino and the first two family squarks have masses ≳ 3 TeV. We present some LHC testable benchmark points which also show the presence of neutralino-stau coannihilation in this scenario. The well-known MSSM parameter tan β ≈ 47.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [INSPIRE].

    ADS  Google Scholar 

  2. Q. Shafi and B. Ananthanarayan, in the proceedings of Summer School in High Energy Physics and Cosmology, June 17-August 9, Trieste, Italy (1991).

    Google Scholar 

  3. L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].

    ADS  Google Scholar 

  4. M. Olechowski and S. Pokorski, Hierarchy of quark masses in the isotopic doublets in N = 1 supergravity models, Phys. Lett. B 214 (1988) 393 [INSPIRE].

    Article  ADS  Google Scholar 

  5. V. Barger, M. Berger and P. Ohmann, The supersymmetric particle spectrum, Phys. Rev. D 49 (1994)4908 [hep-ph/9311269] [INSPIRE].

    ADS  Google Scholar 

  6. M.S. Carena, M. Olechowski, S. Pokorski and C. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].

    Article  ADS  Google Scholar 

  7. B. Ananthanarayan, Q. Shafi and X. Wang, Improved predictions for top quark, lightest supersymmetric particle and Higgs scalar masses, Phys. Rev. D 50 (1994) 5980 [hep-ph/9311225] [INSPIRE].

    ADS  Google Scholar 

  8. G. Anderson et al., Precise predictions for m t , V cb , and tan β, Phys. Rev. D 47 (1993) 3702 [hep-ph/9209250] [INSPIRE].

    ADS  Google Scholar 

  9. G. Anderson, S. Raby, S. Dimopoulos, L. Hall and G. Starkman, A systematic SO(10) operator analysis for fermion masses, Phys. Rev. D 49 (1994) 3660 [hep-ph/9308333] [INSPIRE].

    ADS  Google Scholar 

  10. R. Rattazzi and U. Sarid, The Unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [INSPIRE].

    ADS  Google Scholar 

  11. T. Blazek, M.S. Carena, S. Raby and C.E. Wagner, A global χ2 analysis of electroweak data in SO(10) SUSY GUTs, Phys. Rev. D 56 (1997) 6919 [hep-ph/9611217] [INSPIRE].

    ADS  Google Scholar 

  12. T. Blazek, S. Raby and K. Tobe, Neutrino oscillations in an SO(10) SUSY GUT with U(2) × U(1)n family symmetry, Phys. Rev. D 62 (2000) 055001[hep-ph/9912482] [INSPIRE].

    ADS  Google Scholar 

  13. H. Baer, M.A. Diaz, J. Ferrandis and X. Tata, Sparticle mass spectra from SO(10) grand unified models with Yukawa coupling unification, Phys. Rev. D 61 (2000) 111701 [hep-ph/9907211] [INSPIRE].

    ADS  Google Scholar 

  14. H. Baer et al., Yukawa unified supersymmetric SO(10) model: cosmology, rare decays and collider searches, Phys. Rev. D 63 (2001) 015007 [hep-ph/0005027] [INSPIRE].

    ADS  Google Scholar 

  15. C. Balázs and R. Dermisek, Yukawa coupling unification and nonuniversal gaugino mediation of supersymmetry breaking, JHEP 06 (2003) 024 [hep-ph/0303161] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C. Pallis, b tau unification with gaugino and sfermion mass nonuniversality, Nucl. Phys. B 678 (2004)398 [hep-ph/0304047] [INSPIRE].

    Article  ADS  Google Scholar 

  17. U. Chattopadhyay, A. Corsetti and P. Nath, Supersymmetric dark matter and Yukawa unification, Phys. Rev. D 66 (2002) 035003 [hep-ph/0201001] [INSPIRE].

    ADS  Google Scholar 

  18. T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and supersymmetry spectra from SO(10) Yukawa unification with μ greater than 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [INSPIRE].

    ADS  Google Scholar 

  20. M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, WMAP dark matter constraints and Yukawa unification in SUGRA models with CP phases, Phys. Rev. D 72 (2005) 095008 [hep-ph/0506243] [INSPIRE].

    ADS  Google Scholar 

  21. K. Tobe and J.D. Wells, Revisiting top bottom tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [INSPIRE].

    Article  ADS  Google Scholar 

  22. I. Gogoladze, Y. Mimura and S. Nandi, Unification of gauge, Higgs and matter in extra dimensions, Phys. Lett. B 562 (2003) 307 [hep-ph/0302176] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: a go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Antusch and M. Spinrath, Quark and lepton masses at the GUT scale including SUSY threshold corrections, Phys. Rev. D 78 (2008) 075020 [arXiv:0804.0717] [INSPIRE].

    ADS  Google Scholar 

  25. H. Baer, S. Kraml and S. Sekmen, Isjust-soHiggs splitting needed for t-b-τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Antusch and M. Spinrath, New GUT predictions for quark and lepton mass ratios confronted with phenomenology, Phys. Rev. D 79 (2009) 095004 [arXiv:0902.4644] [INSPIRE].

    ADS  Google Scholar 

  27. D. Guadagnoli, S. Raby and D.M. Straub, Viable and testable SUSY GUTs with Yukawa unification: the case of split trilinears, JHEP 10 (2009) 059 [arXiv:0907.4709] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Choi, D. Guadagnoli, S.H. Im and C.B. Park, Sparticle masses from transverse-mass kinks at the LHC: the case of Yukawa-unified SUSY GUTs, JHEP 10 (2010) 025 [arXiv:1005.0618] [INSPIRE].

    ADS  Google Scholar 

  29. S. Dar, I. Gogoladze, Q. Shafi and C.S. Ün, Sparticle spectroscopy with neutralino dark matter from t-b-τ quasi-Yukawa unification, Phys. Rev. D 84 (2011) 085015 [arXiv:1105.5122] [INSPIRE].

    ADS  Google Scholar 

  30. N. Karagiannakis, G. Lazarides and C. Pallis, CMSSM with Yukawa quasi-unification revisited, Phys. Lett. B 704 (2011) 43 [arXiv:1107.0667] [INSPIRE].

    ADS  Google Scholar 

  31. I. Gogoladze, Q. Shafi and C.S. Ün, SO(10) Yukawa unification with μ < 0, Phys. Lett. B 704 (2011)201 [arXiv:1107.1228] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Badziak, M. Olechowski and S. Pokorski, Yukawa unification in SO(10) with light sparticle spectrum, JHEP 08 (2011) 147 [arXiv:1107.2764] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Antusch, L. Calibbi, V. Maurer, M. Monaco and M. Spinrath, Naturalness and GUT scale Yukawa coupling ratios in the CMSSM, Phys. Rev. D 85 (2012) 035025 [arXiv:1111.6547] [INSPIRE].

    ADS  Google Scholar 

  34. J.S. Gainer, R. Huo and C.E. Wagner, An alternative Yukawa unified SUSY scenario, JHEP 03 (2012) 097 [arXiv:1111.3639] [INSPIRE].

    Article  ADS  Google Scholar 

  35. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [INSPIRE].

    Article  ADS  Google Scholar 

  36. H. Baer, M. Haider, S. Kraml, S. Sekmen and H. Summy, Cosmological consequences of Yukawa-unified SUSY with mixed axion/axino cold and warm dark matter, JCAP 02 (2009) 002 [arXiv:0812.2693] [INSPIRE].

    Article  ADS  Google Scholar 

  37. I. Gogoladze, R. Khalid and Q. Shafi, Yukawa unification and neutralino dark matter in SU(4)(c) × SU(2)(L) × SU(2)(R), Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [INSPIRE].

    ADS  Google Scholar 

  38. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E T , JHEP 02 (2010) 055 [arXiv:0911.4739] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D. Feldman, Z. Liu and P. Nath, Gluino NLSP, dark matter via gluino coannihilation and LHC signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [INSPIRE].

    ADS  Google Scholar 

  40. M. Adeel Ajaib, T. Li, Q. Shafi and K. Wang, NLSP gluino search at the Tevatron and early LHC, JHEP 01 (2011) 028 [arXiv:1011.5518] [INSPIRE].

    Article  ADS  Google Scholar 

  41. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. I. Gogoladze, R. Khalid and Q. Shafi, Coannihilation scenarios and particle spectroscopy in SU(4)(c) × SU(2)(L) × SU(2)(R), Phys. Rev. D 80 (2009) 095016 [arXiv:0908.0731] [INSPIRE].

    ADS  Google Scholar 

  43. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, t-b-τ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum, JHEP 12 (2010) 055 [arXiv:1008.2765] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703-703] [INSPIRE].

    ADS  Google Scholar 

  45. S. Profumo and C. Yaguna, Gluino coannihilations and heavy bino dark matter, Phys. Rev. D 69 (2004) 115009 [hep-ph/0402208] [INSPIRE].

    ADS  Google Scholar 

  46. Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  47. S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].

    ADS  Google Scholar 

  48. U. Chattopadhyay, D. Das and D. Roy, Mixed neutralino dark matter in nonuniversal gaugino mass models, Phys. Rev. D 79 (2009) 095013 [arXiv:0902.4568] [INSPIRE].

    ADS  Google Scholar 

  49. B. Ananthanarayan and P. Pandita, Sparticle mass spectrum in grand unified theories, Int. J. Mod. Phys. A 22 (2007) 3229 [arXiv:0706.2560] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Bhattacharya, A. Datta and B. Mukhopadhyaya, Non-universal gaugino masses: a signal-based analysis for the Large Hadron Collider, JHEP 10 (2007) 080 [arXiv:0708.2427] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Corsetti and P. Nath, Gaugino mass nonuniversality and dark matter in SUGRA, strings and D-brane models, Phys. Rev. D 64 (2001) 125010 [hep-ph/0003186] [INSPIRE].

    ADS  Google Scholar 

  52. S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].

    ADS  Google Scholar 

  53. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  55. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].

    Article  ADS  Google Scholar 

  56. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  57. S. Weinberg, The quantum theory of fields. Volume 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2000).

  58. Q. Shafi and C. Wetterich, Modification of gut predictions in the presence of spontaneous compactification, Phys. Rev. Lett. 52 (1984) 875 [INSPIRE].

    Article  ADS  Google Scholar 

  59. C.T. Hill, Are there significant gravitational corrections to the unification scale?, Phys. Lett. B 135 (1984) 47 [INSPIRE].

    Article  ADS  Google Scholar 

  60. N. Okada, S. Raza and Q. Shafi, Particle spectroscopy of supersymmetric SO(10) with non-universal gaugino masses, Phys. Rev. D 84 (2011) 095018 [arXiv:1107.0941] [INSPIRE].

    ADS  Google Scholar 

  61. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for \( \overline p \) p, pp and e + e reactions, hep-ph/0312045 [INSPIRE].

  62. J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [INSPIRE].

    Article  ADS  Google Scholar 

  63. Y. Yamada, SUSY and GUT threshold effects in SUSY SU(5) models, Z. Phys. C 60 (1993) 83 [INSPIRE].

    ADS  Google Scholar 

  64. J. Chkareuli and I. Gogoladze, Unification picture in minimal supersymmetric SU(5) model with string remnants, Phys. Rev. D 58 (1998) 055011 [hep-ph/9803335] [INSPIRE].

    ADS  Google Scholar 

  65. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

    Article  ADS  Google Scholar 

  66. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  67. CDF and D0 collaboration, T.E.W. Group, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [INSPIRE].

  68. I. Gogoladze, R. Khalid, S. Raza and Q. Shafi, Higgs and sparticle spectroscopy with gauge-Yukawa unification, JHEP 06 (2011) 117 [arXiv:1102.0013] [INSPIRE].

    Article  ADS  Google Scholar 

  69. G. Bélanger, F. Boudjema, A. Pukhov and R. Singh, Constraining the MSSM with universal gaugino masses and implication for searches at the LHC, JHEP 11 (2009) 026 [arXiv:0906.5048] [INSPIRE].

    Article  Google Scholar 

  70. H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with coannihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [INSPIRE].

    Article  ADS  Google Scholar 

  71. H. Baer, C. Balázs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev. D 64 (2001) 035004 [hep-ph/0103280] [INSPIRE].

    ADS  Google Scholar 

  72. ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches Collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].

    Article  ADS  Google Scholar 

  73. CDF collaboration, T. Aaltonen et al., Search for \( B_s^0 \)μ + μ and \( B_d^0 \)μ + μ decays with 2f b −1 of pp collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [INSPIRE].

    Article  ADS  Google Scholar 

  74. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].

  75. WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [INSPIRE].

    Article  ADS  Google Scholar 

  76. M. Olechowski and S. Pokorski, Electroweak symmetry breaking with nonuniversal scalar soft terms and large tan β solutions, Phys. Lett. B 344 (1995) 201 [hep-ph/9407404] [INSPIRE].

    Article  ADS  Google Scholar 

  77. D. Matalliotakis and H.P. Nilles, Implications of nonuniversality of soft terms in supersymmetric grand unified theories, Nucl. Phys. B 435 (1995) 115 [hep-ph/9407251] [INSPIRE].

    Article  ADS  Google Scholar 

  78. H. Murayama, M. Olechowski and S. Pokorski, Viable t-b-τ Yukawa unification in SUSY SO(10), Phys. Lett. B 371 (1996) 57 [hep-ph/9510327] [INSPIRE].

    Article  ADS  Google Scholar 

  79. H. Baer, S. Kraml and S. Sekmen, Isjust-soHiggs splitting needed for t-b-τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [INSPIRE].

    Article  ADS  Google Scholar 

  80. S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry, G.L. Kane, World Scientific, Singapore (1998), hep-ph/9709356 [INSPIRE].

  81. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    Article  ADS  Google Scholar 

  82. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Salih Ün.

Additional information

ArXiv ePrint: 1112.2206

On leave of absence from: Andronikashvili Institute of Physics, 0177 Tbilisi, Georgia. (Ilia Gogoladze)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogoladze, I., Shafi, Q. & Ün, C.S. Higgs boson mass from t-b-τ Yukawa unification. J. High Energ. Phys. 2012, 28 (2012). https://doi.org/10.1007/JHEP08(2012)028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)028

Keywords

Navigation