Skip to main content
Log in

tbτ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show compatibility with all known experimental constraints of tb − τ Yukawa coupling unification in supersymmetric SU(4) c × SU(2) L × SU(2) R which has non-universal gaugino masses and the MSSM parameter μ < 0. In particular, the relic neutralino abundance satisfies the WMAP bounds and Δ(g − 2) μ is in good agreement with the observations. We identify benchmark points for the sparticle spectra which can be tested at the LHC, including those associated with gluino and stau coannihilation channels, mixed bino-Higgsino state and the A-funnel region. We also briefly discuss prospects for testing Yukawa unification with the ongoing and planned direct detection experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ananthanarayan, G. Lazarides and Q. Shafi, Top mass prediction from supersymmetric guts, Phys. Rev. D 44 (1991) 1613 [SPIRES].

    ADS  Google Scholar 

  2. B. Ananthanarayan, G. Lazarides and Q. Shafi, Radiative electroweak breaking and sparticle spectroscopy with tan Beta approximately = m (t)/m (b), Phys. Lett. B 300 (1993) 245 [SPIRES].

    ADS  Google Scholar 

  3. Q. Shafi and B. Ananthanarayan, Will LEP-2 narrowly miss the Weinberg-Salam Higgs boson?, proceedings of Trieste Summer School In High-Energy Physics And Cosmology, Trieste Italy, 17 June–9 August 1991, pg. 233 [SPIRES].

  4. L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].

    ADS  Google Scholar 

  5. V.D. Barger, M.S. Berger and P. Ohmann, The Supersymmetric particle spectrum, Phys. Rev. D 49 (1994) 4908 [hep-ph/9311269] [SPIRES].

    ADS  Google Scholar 

  6. M.S. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [SPIRES].

    Article  ADS  Google Scholar 

  7. B. Ananthanarayan, Q. Shafi and X.M. Wang, Improved predictions for top quark, lightest supersymmetric particle and Higgs scalar masses, Phys. Rev. D 50 (1994) 5980 [hep-ph/9311225] [SPIRES].

    ADS  Google Scholar 

  8. G.W. Anderson, S. Raby, S. Dimopoulos and L.J. Hall, Precise predictions for m(t), V(cb) and tan Beta, Phys. Rev. D 47 (1993) 3702 [hep-ph/9209250] [SPIRES].

    ADS  Google Scholar 

  9. G. Anderson, S. Raby, S. Dimopoulos, L.J. Hall and G.D. Starkman, A Systematic SO(10) operator analysis for fermion masses, Phys. Rev. D 49 (1994) 3660 [hep-ph/9308333] [SPIRES].

    ADS  Google Scholar 

  10. R. Rattazzi and U. Sarid, The Unified minimal supersymmetric model with large Yukawa couplings, Phys. Rev. D 53 (1996) 1553 [hep-ph/9505428] [SPIRES].

    ADS  Google Scholar 

  11. T. Blazek, M.S. Carena, S. Raby and C.E.M. Wagner, A global χ 2 analysis of electroweak data in SO(10) SUSY GUTs, Phys. Rev. D 56 (1997) 6919 [hep-ph/9611217] [SPIRES].

    ADS  Google Scholar 

  12. T. Blazek, S. Raby and K. Tobe, Neutrino oscillations in an SO(10) SUSY GUT with U(2) × U(1)n family symmetry, Phys. Rev. D 62 (2000) 055001 [hep-ph/9912482] [SPIRES].

    ADS  Google Scholar 

  13. H. Baer, M.A. Diaz, J. Ferrandis and X. Tata, Sparticle mass spectra from SO(10) grand unified models with Yukawa coupling unification, Phys. Rev. D 61 (2000) 111701 [hep-ph/9907211] [SPIRES].

    ADS  Google Scholar 

  14. H. Baer et al., Yukawa unified supersymmetric SO(10) model: Cosmology, rare decays and collider searches, Phys. Rev. D 63 (2000) 015007 [hep-ph/0005027] [SPIRES].

    ADS  Google Scholar 

  15. S. Profumo, Neutralino dark matter, b-tau Yukawa unification and non-universal sfermion masses, Phys. Rev. D 68 (2003) 015006 [hep-ph/0304071] [SPIRES].

    ADS  Google Scholar 

  16. C. Balázs and R. Dermisek, Yukawa coupling unification and non-universal gaugino mediation of supersymmetry breaking, JHEP 06 (2003) 024 [hep-ph/0303161] [SPIRES].

    Article  ADS  Google Scholar 

  17. C. Pallis, b-tau unification and sfermion mass non-universality, Nucl. Phys. B 678 (2004) 398 [hep-ph/0304047] [SPIRES].

    Article  ADS  Google Scholar 

  18. M.E. Gomez, G. Lazarides and C. Pallis, Supersymmetric cold dark matter with Yukawa unification, Phys. Rev. D 61 (2000) 123512 [hep-ph/9907261] [SPIRES].

    ADS  Google Scholar 

  19. M.E. Gomez, G. Lazarides and C. Pallis, Yukawa quasi-unification, Nucl. Phys. B 638 (2002) 165 [hep-ph/0203131] [SPIRES].

    Article  ADS  Google Scholar 

  20. M.E. Gomez, G. Lazarides and C. Pallis, On Yukawa quasi-unification with μ < 0, Phys. Rev. D 67 (2003) 097701 [hep-ph/0301064] [SPIRES].

    ADS  Google Scholar 

  21. I. Gogoladze, Y. Mimura, S. Nandi and K. Tobe, Test of gauge-Yukawa unification, Phys. Lett. B 575 (2003) 66 [hep-ph/0307397] [SPIRES].

    ADS  Google Scholar 

  22. U. Chattopadhyay, A. Corsetti and P. Nath, Supersymmetric dark matter and Yukawa unification, Phys. Rev. D 66 (2002) 035003 [hep-ph/0201001] [SPIRES].

    ADS  Google Scholar 

  23. T. Blazek, R. Dermisek and S. Raby, Predictions for Higgs and SUSY spectra from SO(10) Yukawa unification with μ > 0, Phys. Rev. Lett. 88 (2002) 111804 [hep-ph/0107097] [SPIRES].

    Article  ADS  Google Scholar 

  24. T. Blazek, R. Dermisek and S. Raby, Yukawa unification in SO(10), Phys. Rev. D 65 (2002) 115004 [hep-ph/0201081] [SPIRES].

    ADS  Google Scholar 

  25. M.E. Gomez, T. Ibrahim, P. Nath and S. Skadhauge, WMAP dark matter constraints and Yukawa unification in SUGRA models with CP phases, Phys. Rev. D 72 (2005) 095008 [hep-ph/0506243] [SPIRES].

    ADS  Google Scholar 

  26. K. Tobe and J.D. Wells, Revisiting top-bottom-tau Yukawa unification in supersymmetric grand unified theories, Nucl. Phys. B 663 (2003) 123 [hep-ph/0301015] [SPIRES].

    Article  ADS  Google Scholar 

  27. W. Altmannshofer, D. Guadagnoli, S. Raby and D.M. Straub, SUSY GUTs with Yukawa unification: A Go/no-go study using FCNC processes, Phys. Lett. B 668 (2008) 385 [arXiv:0801.4363] [SPIRES].

    ADS  Google Scholar 

  28. D. Guadagnoli, S. Raby and D.M. Straub, Viable and testable SUSY GUTs with Yukawa unification: the case of split trilinears, JHEP 10 (2009) 059 [arXiv:0907. 4709] [SPIRES].

    Article  ADS  Google Scholar 

  29. H. Baer, S. Kraml and S. Sekmen, Is ’just-so’ Higgs splitting needed for t-b-τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [SPIRES].

    Article  ADS  Google Scholar 

  30. K. Choi, D. Guadagnoli, S.H. Im and C.B. Park, Sparticle masses from transverse mass kinks at the LHC: the case of Yukawa-unified SUSY GUTs, JHEP 10 (2010) 025 [arXiv:1005.0618] [SPIRES].

    ADS  Google Scholar 

  31. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs, JHEP 03 (2008) 056 [arXiv:0801.1831] [SPIRES].

    Article  ADS  Google Scholar 

  32. H. Baer, M. Haider, S. Kraml, S. Sekmen and H. Summy, Cosmological consequences of Yukawa-unified SUSY with mixed axion/axino cold and warm dark matter, JCA P 02 (2009) 002 [arXiv:0812.2693] [SPIRES].

    ADS  Google Scholar 

  33. I. Gogoladze, R. Khalid and Q. Shafi, Yukawa Unification and Neutralino Dark Matter in SU(4) c × SU(2) L × SU(2)R, Phys. Rev. D 79 (2009) 115004 [arXiv:0903.5204] [SPIRES].

    ADS  Google Scholar 

  34. H. Baer, S. Kraml, A. Lessa and S. Sekmen, Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E T , JHEP 02 (2010) 055 [arXiv:0911.4739] [SPIRES].

    Article  ADS  Google Scholar 

  35. I. Gogoladze, R. Khalid and Q. Shafi, Coannihilation Scenarios and Particle Spectroscopy in SU(4) c × SU(2) L × SU(2)R, Phys. Rev. D 80 (2009) 095016 [arXiv:0908.0731] [SPIRES].

    ADS  Google Scholar 

  36. J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [SPIRES].

    ADS  Google Scholar 

  37. R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [SPIRES].

    ADS  Google Scholar 

  38. G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [SPIRES].

    ADS  Google Scholar 

  39. M. Magg, Q. Shafi and C. Wetterich, Gauge Hierarchy In Presence Of Discrete Symmetry, Phys. Lett. B 87 (1979) 227 [SPIRES].

    ADS  Google Scholar 

  40. M. Cvetič, Spontaneous Breaking Of The Left-Right Symmetry And Quantum Corrections, Nucl. Phys. B 233 (1984) 387 [SPIRES].

    Article  ADS  Google Scholar 

  41. T.W.B. Kibble, G. Lazarides and Q. Shafi, Strings in SO(10), Phys. Lett. B 113 (1982) 237 [SPIRES].

    ADS  Google Scholar 

  42. T.W.B. Kibble, G. Lazarides and Q. Shafi, Walls Bounded by Strings, Phys. Rev. D 26 (1982) 435 [SPIRES].

    ADS  Google Scholar 

  43. R.N. Mohapatra and B. Sakita, SO(2N) grand unification in an SU(N) basis, Phys. Rev. D 21 (1980) 1062 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  44. S. Profumo and C.E. Yaguna, Gluino coannihilations and heavy bino dark matter, Phys. Rev. D 69 (2004) 115009 [hep-ph/0402208] [SPIRES].

    ADS  Google Scholar 

  45. D. Feldman, Z. Liu and P. Nath, Gluino NLSP, Dark Matter via Gluino Coannihilation, and LHC Signatures, Phys. Rev. D 80 (2009) 015007 [arXiv:0905.1148] [SPIRES].

    ADS  Google Scholar 

  46. Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [SPIRES].

    ADS  Google Scholar 

  47. D. Stöckinger, The muon magnetic moment and supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [SPIRES].

    ADS  Google Scholar 

  48. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [SPIRES].

    Article  ADS  Google Scholar 

  49. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge Models with Spontaneously Broken Local Supersymmetry, Phys. Lett. B 119 (1982) 343 [SPIRES].

    ADS  Google Scholar 

  50. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [SPIRES].

    ADS  Google Scholar 

  51. E. Cremmer, P. Fayet and L. Girardello, Gravity Induced Supersymmetry Breaking and Low-Energy Mass Spectrum, Phys. Lett. B 122 (1983) 41 [SPIRES].

    ADS  Google Scholar 

  52. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [SPIRES].

    Article  ADS  Google Scholar 

  53. A. Hebecker and J. March-Russell, The structure of GUT breaking by orbifolding, Nucl. Phys. B 625 (2002) 128 [hep-ph/0107039] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  54. I. Gogoladze, Y. Mimura and S. Nandi, Unification of gauge, Higgs and matter in extra dimensions, Phys. Lett. B 562 (2003) 307 [hep-ph/0302176] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  55. I. Gogoladze, Y. Mimura and S. Nandi, Model building with gauge-Yukawa unification, Phys. Rev. D 69 (2004) 075006 [hep-ph/0311127] [SPIRES].

    ADS  Google Scholar 

  56. I. Gogoladze, C. A. Lee, Y. Mimura and Q. Shafi, Yukawa couplings in a model with gauge, Higgs and matter unification, Phys. Lett. B 649 (2007) 212 [hep-ph/0703107] [SPIRES].

    ADS  Google Scholar 

  57. H. Baer, F.E. Paige, S.D. Protopopescu and X. Tata, ISAJET 7.48: A Monte Carlo event generator for p p, \( \bar{p}p \) and e + e reactions, hep-ph/0001086 [SPIRES].

  58. J. Hisano, H. Murayama and T. Yanagida, Nucleon decay in the minimal supersymmetric SU(5) grand unification, Nucl. Phys. B 402 (1993) 46 [hep-ph/9207279] [SPIRES].

    Article  ADS  Google Scholar 

  59. Y. Yamada, SUSY and GUT threshold effects in SUSY SU(5) models, Z. Phys. C 60 (1993) 83 [SPIRES].

    ADS  Google Scholar 

  60. J.L. Chkareuli and I.G. Gogoladze, Unification picture in minimal supersymmetric SU(5) model with string remnants, Phys. Rev. D 58 (1998) 055011 [hep-ph/9803335] [SPIRES].

    ADS  Google Scholar 

  61. V. Barger, D. Marfatia and A. Mustafayev, Neutrino sector impacts SUSY dark matter, Phys. Lett. B 665 (2008) 242 [arXiv:0804.3601] [SPIRES].

    ADS  Google Scholar 

  62. M. E. Gomez, S. Lola, P. Naranjo and J. Rodriguez-Quintero, WMAP Dark Matter Constraints on Yukawa Unification with Massive Neutrinos, [arXiv:0901.4013] [SPIRES].

  63. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [SPIRES].

    Article  ADS  Google Scholar 

  64. L.E. Ibáñez and G.G. Ross, SU(2) − L × U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts, Phys. Lett. B 110 (1982) 215 [SPIRES].

    ADS  Google Scholar 

  65. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, A spects of Grand Unified Models with Softly Broken Supersymmetry, Prog. Theor. Phys. 68 (1982) 927 [Erratum ibid 70 (1983) 330] [SPIRES].

    Article  ADS  Google Scholar 

  66. L.E. Ibáñez, Locally Supersymmetric SU(5) Grand Unification, Phys. Lett. B 118 (1982) 73 [SPIRES].

    ADS  Google Scholar 

  67. J.R. Ellis, D.V. Nanopoulos and K. Tamvakis, Grand Unification in Simple Supergravity, Phys. Lett. B 121 (1983) 123 [SPIRES].

    ADS  Google Scholar 

  68. L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal Low-Energy Supergravity, Nucl. Phys. B 221 (1983) 495 [SPIRES].

    Article  ADS  Google Scholar 

  69. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  70. Tevatron Electroweak Working Group and CDF and D0 collaboration, Combination of CDF and D0 Results on the Mass of the Top Quark, arXiv:0903.2503 [SPIRES].

  71. G. Bélanger, F. Boudjema, A. Pukhov and R.K. Singh, Constraining the MSSM with universal gaugino masses and implication for searches at the LHC, JHEP 11 (2009) 026 [arXiv:0906.5048] [SPIRES].

    Article  Google Scholar 

  72. H. Baer, S. Kraml, S. Sekmen and H. Summy, Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUT s, JHEP 03 (2008) 056 [arXiv:0801.1831] [SPIRES].

    Article  ADS  Google Scholar 

  73. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  74. H. Baer, C. Balázs and A. Belyaev, Neutralino relic density in minimal supergravity with co-annihilations, JHEP 03 (2002) 042 [hep-ph/0202076] [SPIRES].

    Article  ADS  Google Scholar 

  75. H. Baer, C. Balazs, J. Ferrandis and X. Tata, Impact of muon anomalous magnetic moment on supersymmetric models, Phys. Rev. D 64 (2001) 035004 [hep-ph/0103280] [SPIRES].

    ADS  Google Scholar 

  76. ALEPH, DELPHI, L3, OPAL collaborations and LEP Working Group for Higgs Boson Searches, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [SPIRES].

    Article  ADS  Google Scholar 

  77. CDF collaboration, T. Aaltonen et al., Search for B s 0 → μ + μ and B d 0μ + μ decays with 2fb 1 of \( p\bar{p} \) collisions, Phys. Rev. Lett. 100 (2008) 101802 [arXiv:0712.1708] [SPIRES].

    Article  ADS  Google Scholar 

  78. Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b–hadron and c–hadron Properties at the End of 2007, arXiv:0808.1297 [SPIRES].

  79. WMAP collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].

    Article  ADS  Google Scholar 

  80. The CDMS-II collaboration, Z. Ahmed et al., Dark Matter Search Results from the CDMS II Experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [SPIRES].

    Article  ADS  Google Scholar 

  81. XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].

    Article  ADS  Google Scholar 

  82. Super-Kamiokande collaboration, S. Desai et al., Search for dark matter WIMPs using upward through-going muons in Super-Kamiokande, Phys. Rev. D 70 (2004) 083523 [Erratum ibid D 70 (2004) 109901] [hep-ex/0404025] [SPIRES].

    ADS  Google Scholar 

  83. IceCube collaboration, R. Abbasi et al., Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector, Phys. Rev. Lett. 102 (2009) 201302 [arXiv:0902.2460] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Gogoladze.

Additional information

On leave of absence from: Andronikashvili Institute of Physics, GAS, Tbilisi, Georgia. (Ilia Gogoladze)

On study leave from: Centre for Advanced Mathematics & Physics of the National University of Sciences & Technology, H-12, Islamabad, Pakistan. (Rizwan Khalid)

On study leave from: Department of Physics, FUUAST, Islamabad, Pakistan. (Shabbar Raza)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogoladze, I., Khalid, R., Raza, S. et al. tbτ Yukawa unification for μ < 0 with a sub-TeV sparticle spectrum. J. High Energ. Phys. 2010, 55 (2010). https://doi.org/10.1007/JHEP12(2010)055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2010)055

Keywords

Navigation