Skip to main content
Log in

Seismic Source of 1966 Huacho Peru Earthquake (Mw 8.1) from Tsunami Waveform Inversion

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this research we estimated the slip distribution of the 1966 Huacho Peru earthquake, by inverting tsunami waveforms. This event took place offshore the central Peru region and produced severe ground shaking in the cities of Supe and Huacho, with intensities of VIII MM, leading to 100 fatalities. The coseismic seabed deformation produced by the earthquake triggered a regional tsunami that inundated some coastal areas, with major effects in Casma and Tortugas. We used the tsunami waveforms from three tidal stations located in Chimbote, Callao and Marcona, to obtain the parameters of the seismic source through an inversion process, whereby we compared the simulated and observed waveforms using the non-negative least square approach. Our results show a dislocation with a maximum slip of 5.5 m located around the epicentre. This implies that the asperity with maximum energy release was located offshore Barranca city. The seismic moment was calculated as 2.05\(\times\)10\(^{21}\) Nm, which is equivalent to a moment magnitude of 8.1 Mw. We suggest that there is a high potential for the generation of a tsunamigenic earthquake in the central region of Peru, despite the occurrence of the 1966 Peruvian earthquake, because this earthquake (together with the 1940, 1974 and 2007 earthquakes) has only released around the 20% of the energy accumulated from the 1746 earthquake (Mw9.0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe, K. (1972). Mechanism and tectonic implications of the 1966 and 1970 Peru earthquakes. Physics of the Earth and Planetary Interiors, 5, 367–379.

    Article  Google Scholar 

  • An, C., Sepúlveda, I., & Liu, P. (2014). Tsunami source and its validation of the 2014 Iquique, Chile earthquake. GRL, 41, 1–7.

    Article  Google Scholar 

  • Beck, S., & Nishenko, S. (1990). Variations in the mode of great earthquake rupture along the central Peru subduction zone. GRL, 17(11), 1969–1972.

    Article  Google Scholar 

  • Beck, S., & Ruff, L. (1989). Great earthquakes and subduction along the Peru trench. Physics of the Earth and Planetary Interiors, 57, 199–224.

    Article  Google Scholar 

  • Chlieh, M., Perfettini, H., Tavera, H., Avouac, J., Remy, D., Nocquet, J., Rolandone, F., Bondoux, F., Gabalda, G., & Bonvalot, S. (2011). Interseismic coupling and seismic potential along the central Andes subduction zone. JGR, 116(B12405), 21.

    Google Scholar 

  • Dewey, J., & Spence, W. (1979). Seismic gaps and zones of recent large earthquakes in coastal Peru. Pure and Applied Geophysics, 117, 1148–1171.

    Article  Google Scholar 

  • Dorbath, L., Cisternas, A., & Dorbath, C. (1990). Assessment of the size of large and great historical earthquakes in Peru. BSSA, 80(3), 515–576.

    Google Scholar 

  • Fujii, Y., & Satake, K. (2006). Source of the July 2006 west Java tsunami estimated from tide gauges records. GRL, 41(24), L24317.

    Article  Google Scholar 

  • Fujii, Y., & Satake, K. (2008). Tsunami waveform inversion of the 2007 Bengkulu, southern Sumatra, earthquake. Earth Planets Space, 60, 993–998.

    Article  Google Scholar 

  • Gica, E., Teng, M., Asce, M., Liu, P., Asce, F., Titov, V., & Zhou, H. (2007). Sensitivity analysis of source parameters for earthquake generated distant tsunamis. Journal of Waterways, Port, Coasts and Ocean Engineering, 133, 429–441.

    Article  Google Scholar 

  • Hayes, G., Wald, D., & Johnson, R. (2012). Slab1.0: A three dimensional model of global subduction zone geometries. JGR, 117:B01302.

  • Heidarzadeh, M., & Satake, K. (2015). New insights into the source of the Makran tsunami of 27 november 1945 from tsunami waveforms and coastal deformation data. Pure and Applied Geophysics, 172(3), 621–640.

    Article  Google Scholar 

  • Henry, C., & Das, S. (2001). Aftershock zones of large shallow earthquakes: Fault dimensions, aftershock area expansion and scalling relations. Geophyscial Journal International, 1147, 272–293.

    Article  Google Scholar 

  • Imamura, F., Yalciner, A., & Ozyurt, G. (2006). Tsunami modelling manual (Tunami model). Tohoku University.

  • Ioualalen, M., Perfettini, H., Yauri, S., & Jiménez, C. (2013). Tsunami modeling to validate slip models of the 2007 Mw8.0 Pisco earthquake, central Peru. Pure and Applied Geophysics, 170, 433–451.

    Article  Google Scholar 

  • Jiménez, C., Carbonel, C., & Villegas-Lanza, J. (2020). Seismic source of the earthquake of Camana Peru 2001 (Mw 8.2) from joint inversion of geodetic and tsunami data. Pure Appl. Geophys.

  • Jiménez, C. & Moggiano, N. (2020). Numerical simulation of the 1940 Lima-Peru earthquake and tsunami (Mw 8.0). Journal of Seismology, 24(1):89–99.

  • Jiménez, C., Moggiano, N., Mas, E., Adriano, B., Fujii, Y., & Koshimura, S. (2014). Tsunami waveform inversion of the 2007 Peru (8.1 Mw) earthquake. Journal of Disaster Research, 9(6):954–969.

  • Jiménez, C., Moggiano, N., Mas, E., Adriano, B., Koshimura, S., Fujii, Y., & Yanagisawa, H. (2013). Seismic source of 1746 Callao earthquake from tsunami numerical modelling. Journal of Disaster Research, 8(2), 266–273.

    Article  Google Scholar 

  • Jiménez, C., Moggiano, N., Yauri, S., & Calvo, M. (2016). Fuente sísmica del terremoto de Huacho-Perú 1966 de 8.1 Mw a partir de inversión de registros mareográficos. Revista de Investigación de Física, 19(1):1–9.

  • Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2987.

    Article  Google Scholar 

  • Kelleher, J. (1972). Rupture zones of large south american earthquakes and some predictions. Journal of Geophysical Research, 27, 2087–2103.

    Article  Google Scholar 

  • Kendrick, E., Bevis, M., Smalley, R., & Brooks, B. (2003). The Nazca South America Euler vector and its rate of change. Journal of South American Earth Sciences, 16, 125–131.

    Article  Google Scholar 

  • Langer, C., & Spence, W. (1995). The 1974 Peru earthquake series. Bulletin of Seismological Society of America, 85(3), 665–687.

    Google Scholar 

  • Lawson, C., & Hanson, R. (1974). Solving least squares problems. Prentice Hall.

    Google Scholar 

  • Leveque, J., Rivera, L., & Wittlinger, G. (1993). On the use of the checker-board test to assess the resolution of tomographic inversions. Geophysical Journal International, 115, 313–318.

    Article  Google Scholar 

  • Lomnitz, C., & Cabré, R. (1968). The Peru earthquake of october 17, 1966. Bulletin of Seismological Society of America, 58, 645–661.

    Article  Google Scholar 

  • Mas, E., Adriano, B., Pulido, P., Jiménez, C., & Koshimura, S. (2014). Simulation of tsunami inundation in central Peru from future megathrust earthquake scenarios. Journal of Disaster Research, 9(6), 961–967.

    Article  Google Scholar 

  • Melgar, D., Fan, W., Riquelme, S., Geng, J., Liang, C., Fuentes, M., Vargas, G., Allen, R., Shearer, P., & Fielding, E. (2016). Slip segmentation and slow rupture to the trench during the 2015, mw8.3 Illapel. Chile earthquake. Geophysical Research Letters, 43, 961–966.

    Article  Google Scholar 

  • Moreno, M., Bolte, J., Klotz, J., & Melnick, D. (2009). Impact of megathrust geometry on inversion of cosesimic slip from geodetic data: Application to the 1960 Chile earthquake. Geophysical Research Letters, 36, L16310.

    Article  Google Scholar 

  • Murty, T., & Wigen, S. (1975). Tsunami water levels and spectra for Peru (tide gage recordings). Tsunami Newsletter, 8(1), 2–17.

    Google Scholar 

  • Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half space. Bulletin of Seismological Society of America, 82, 1018–1040.

    Article  Google Scholar 

  • Pararas-Carayannis, G. (1974). An investigation of tsunami source mechanism off the coast of central Peru. Marine Geology, 17, 235–247.

    Article  Google Scholar 

  • Satake, K. (1987). Inversion of tsunami waveform for the estimation of a fault heterogeneity: method and numerical experiment. Journal of Physics of the Earth, 35(1), 241–254.

    Article  Google Scholar 

  • Satake, K. (1995). Linear and non linear computations of the 1992 Nicaragua earthquake tsunami. Pure and Applied Geophysics, 144(3–4), 455–470.

    Article  Google Scholar 

  • Satake, K., & Kanamori, H. (1991). Use of tsunami waveform for earthquake source study. Natural Hazards, 4, 193.

    Article  Google Scholar 

  • Silgado, E. (1978). Historia de los sismos más notables ocurridos en el Perú (1513-1974). Instituto de Geología y Minería.

  • Soloviev, S. & Go, C. (1975). Catalogue of tsunamis on the eastern shore of the Pacific Ocean. Nauka Publishing House.

  • Tichelaar, B., & Ruff, L. (1989). How good are our best models? EOS, 70(20), 593–605.

    Article  Google Scholar 

  • Villegas, J. (2009). Modelos de velocidad unidimensional para las regiones norte, centro y sur de Perú. UNSA: Tesis de Grado.

    Google Scholar 

  • Villegas, J., Chlieh, M., Cavalie, O., Baby, P., & Nouquet, J. (2016). Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the peruvian sliver and subandean shortening accomodation. JGR, 29, 195–207.

    Google Scholar 

  • Wang, R., Lorenzo, M., & Roth, F. (2003). Computation of deformation induced by earthquakes in a multilayer elastic crust, Fortran programs EDGRN/EDCMP. Computers and Geosciences, 29, 195–207.

    Article  Google Scholar 

  • Yamazaki, Y., & Cheung, K. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 chile earthquake. Geophysical Research Letters, 38(12), 1–8.

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Jiménez.

Ethics declarations

Conflict of Interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, C., Carbonel, C., Villegas-Lanza, J.C. et al. Seismic Source of 1966 Huacho Peru Earthquake (Mw 8.1) from Tsunami Waveform Inversion. Pure Appl. Geophys. 180, 1679–1693 (2023). https://doi.org/10.1007/s00024-022-03132-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03132-7

Keywords

Navigation