Skip to main content

Advertisement

Log in

Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Glob Planet Chang 22(1–4):93–103

    Article  Google Scholar 

  2. Coudrain A, Francou B, Kundzewicz ZW (2005) Glacier shrinkage in the Andes and consequences for water resources—editorial. Hydrol Sci J 50(6):925–932

    Google Scholar 

  3. Mark BG, Seltzer GO (2005) Deglaciation in the Peruvian Andes: climatic forcing, hydrologic impact and comparative rates over time. In: Huber U, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions: an overview of current knowledge, Springer, Dordrecht, vol. 23, pp 205–214

  4. Mark BG, McKenzie JM, Gomez J (2005) Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. Hydrol Sci J 50(6):975–987

    Google Scholar 

  5. Mark BG, McKenzie JM (2007) Tracing increasing tropical Andean glacier melt with stable isotopes in water. Environ Sci Technol 41(20):6955–6960

    Article  CAS  PubMed  Google Scholar 

  6. Spang E (2006) Alpine lakes and glaciers in Peru: managing sources of water and destruction. Research sponsored by Tufts Institute of the Environment research Grant

  7. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth-Sci Rev 89(3):79–96

    Article  Google Scholar 

  8. Wilson JJ, Reyes L, Garayer J (1967) Geology of the Mollembamba, Tayamba, Huaylas, and Pomabama Quadrangle, for Caruaz and Hauri, Lima. Survey, B.G. (Ed.) (in Spanish)

  9. Nordstrom DK, Southam G (1997) Geomicrobiology of sulphide mineral oxidation. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals, vol 35, Mineralogical Society of America, Washington DC, pp 361–390

  10. Grande JA, Beltrán R, Sáinz A, Santos JC, de la Torre ML, Borrego J (2005) Acid mine drainage and acid rock drainage processes in the environment of Herrerías mine (Iberian pyrite belt, Huelva-Spain) and impact on the Andevalo dum. Environ Geol 47(1):185–196

    Article  CAS  Google Scholar 

  11. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473

    Article  CAS  PubMed  Google Scholar 

  12. Aliaga ED, Palomino EJ, Yupanqui E, Salvador ML, Bobadilla MC, Hilden F, López MN (2009) Capacidad de las plantas nativas en ambientes con drenaje ácido para la bioacumulación de metales pesados. Aporte Santiaguino 2(1):9–20

    Google Scholar 

  13. Alakangas L, Andersson E, Mueller S (2013) Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes. Environ Sci Pollut Res 20(11):7907–7916

    Article  CAS  Google Scholar 

  14. Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto river. Appl Environ Microbiol 69(8):4853–4865

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ehrlich HL (1996) Geomicrobiology, 3rd edn. Marcel Dekker, New York, 267 pp

    Google Scholar 

  16. Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, part A: processes, techniques, and health issues. The Society of Economic Geologists, Littleton, pp 133–160

    Google Scholar 

  17. Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317

    Article  CAS  Google Scholar 

  18. Palomino E, Paredes M, Villanueva A (2005) Biorremediación de DAM mediante sistema de humedales. IV Congreso Internacional de Medio Ambiente en Minería y Metalurgia, Lima

    Google Scholar 

  19. Burns PJ (2011) A multi-parameter hydrochemical characterization of proglacial runoff, Cordillera Blanca, Perú. Cryosphere Discuss 5:2483–2521

    Article  Google Scholar 

  20. Fortner SK, Mark BG, McKenzie JM, Bury J, Trierweiler A, Baraer M, Burns PJ, Munk LA (2011) Elevated stream trace and minor element concentrations in the foreland of receding tropical glaciers. Appl Geochem 26(11):1792–1801

    Article  CAS  Google Scholar 

  21. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. De Santis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072

    Article  Google Scholar 

  24. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12(7):1889–1898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  28. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(suppl 1):D141–D145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Window’s user’s guide: software for canonical community ordination (version 4.5). Ithaca: Microcomputer Power.

  30. Cobbing J, Sánchez A, Martínez W, Zárate H (1996) Geología de los cuadrángulos de Huaraz, Recuay, La Unión, Chiquian y Yanahuanca. Hojas: 20-h, 20-i, 20-j, 21-i, 21-j. INGEMMET, Perú

  31. Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    Article  CAS  Google Scholar 

  32. Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers CN, Jambor DK, Nordstrom DK (eds) Sulfate minerals. Reviews in mineralogy & geochemistry, vol. 40, Mineralogical Society of America, Geochemical Society, pp 351–403

  33. Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 102:131–158

    Google Scholar 

  34. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2006) Microbial community succession in an unvegetated recently deglaciated soil. Microb Ecol 53(1):110–122

    Article  PubMed  Google Scholar 

  35. Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the dry valleys of eastern Antarctica. ISME J 2(3):308–320

    Article  CAS  PubMed  Google Scholar 

  36. Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75(23):7519–7526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Bartrons M, Catalan J, Casamayor EO (2012) High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes. Microb Ecol 64(4):860–869

    Article  PubMed  Google Scholar 

  38. Tang C, Madigan MT, Lanoil B (2013) Bacterial and archaeal diversity in sediments of west lake Bonney, McMurdo dry valleys, Antarctica. Appl Environ Microbiol 79(3):1034–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14(1):9–19

    Article  CAS  PubMed  Google Scholar 

  40. Kimura S, Bryan CG, Hallberg KB, Johnson DB (2011) Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Environ Microbiol 13(8):2092–2104

    Article  CAS  PubMed  Google Scholar 

  41. Dold B, Gonzalez-Toril E, Aguilera A, Lopez-Pamo E, Cisternas ME, Bucchi F, Amils R (2013) Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean. Environ Sci Technol 47(12):6129–6136

    CAS  PubMed  Google Scholar 

  42. Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic microorganisms. In: Poole RK (ed) Advances in microbial physiology, Academic Press, vol. 54, pp 201–255

  43. Elberling B (2005) Temperature and oxygen control on pyrite oxidation in frozen mine tailings. Cold Reg Sci Technol 41:121–133

    Article  Google Scholar 

  44. Sattley WM, Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72(8):5562–5568

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Gonzalez-Toril E, Aguilera A, Souza-Egipsy V, Lopez-Pamo E, Sanchez-España J, Amils R (2011) Geomicrobiology of an acid mine effluent, La Zarza-Perrunal (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77:2685–2694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Huang L, Zhou W, Hallberg KB, Wan C, Li J, Shu W (2011) Spatial and temporal analysis of the microbial community in the tailings of a Pb–Zn mine generating acidic drainage. Appl Environ Microbiol 77:5540–5544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Pradhan S, Srinivas TN, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha MS, Yasala AK, Reddy GS, Shivaji S (2010) Bacterial biodiversity from Roopkund Glacier, Himalayan mountain ranges, India. Extremophiles 14(4):377–395

    Article  CAS  PubMed  Google Scholar 

  48. Segawa T, Takeuchi N, Ushida K, Kanda H, Kohshima S (2010) Altitudinal changes in a bacterial community on Gulkana Glacier in Alaska. Microbes Environ 25(3):171–182

    Article  PubMed  Google Scholar 

  49. Srinivas TN, Singh SM, Pradhan S, Pratibha MS, Kishore KH, Singh AK, Begum Z, Prabagaran SR, Reddy GS, Shivaji S (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15(6):673–690

    Article  CAS  PubMed  Google Scholar 

  50. Lu S, Chourey K, Reiche M, Nietzsche S, Shah MB, Neu TR, Hettich RL, Küsel K (2013) Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates (“iron snow”). Appl Environ Microbiol 79(14):4272–4281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Sattin SR, Cleveland CC, Hood E, Reed SC, King AJ, Schmidt SK, Robeson MS, Ascarrunz N, Nemergut DR (2009) Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 47(6):673–681

    Article  PubMed  Google Scholar 

  52. Ziegler S, Waidner B, Itoh T, Schumann P, Spring S, Gescher J (2013) Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int J Syst Evol Microbiol 63(Pt 4):1499–1504

    Article  PubMed  Google Scholar 

  53. Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In: Plumlee GS, Losdon MJ (eds) The environmental geochemistry of mineral deposits, part A: processes, techniques, and health issues. Society of Economic Geologists, Littleton, pp 161–182

    Google Scholar 

  54. Munk LA, Faure G, Pride D, Bigham JM (2002) Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake river, Summit county, Colorado. Appl Geochem 17:421–430

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff from Huaraz National Park for the sampling permits and support during the field trip. MB was supported by a FINCyT-Science and Technology Program Grant 117-2009-FINCyT-BDE, Presidency of the Council of Ministers of Peru. The authors wish to thank also Mª Paz Martín Redondo (Centro de Astrobiología) for the TXRF and ICP-MS analysis. The work has been supported by the Spanish Science and Innovation Grant CGL2011-22540.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles Aguilera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Toril, E., Santofimia, E., Blanco, Y. et al. Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment. Microb Ecol 70, 936–947 (2015). https://doi.org/10.1007/s00248-015-0634-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0634-3

Keywords

Navigation