Skip to main content
Log in

In vivo characterisation of soft tissue tumours by 1.5-T proton MR spectroscopy

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To determine whether proton magnetic resonance spectroscopy (1H-MRS) can help differentiate between benign and malignant soft tissue lesions, and to assess if there is a correlation between 1H-MRS data and the mitotic index.

Methods

MR measurements were performed in 43 patients with soft tissue tumours >15 mm in diameter. Six cases were excluded for technical failure. Examinations were performed at 1.5 T using a single-voxel point resolved spectroscopy sequence (PRESS) with TR/TE = 2000/150 ms. The volume of interest was positioned within the lesion avoiding inclusion of necrotic regions. In all patients, a histological diagnosis was obtained and the corresponding mitotic index was also computed. 1H-MRS results and histopathological findings were compared using the chi-squared test and correlation coefficient.

Results

Choline was detected in 18/19 patients with malignant tumours and in 3/18 patients with benign lesions. The three benign lesions included one desmoid tumour, one ossificans myositis and one eccrine spiradenoma. Choline was not detected in 15 patients with benign lesions or in one patient with dermatofibrosarcoma protuberans. Resulting 1H-MRS sensitivity and specificity were 95% and 83% respectively.

Conclusions

Absence of choline peak is highly predictive of benign tumours suggesting that 1H-MRS can help to differentiate malignant from benign tumours.

Key Points

1H-MRS may allow differentiation between benign and malignant soft tissue lesions

Absence of choline peak is highly predictive of benign soft tissue lesions

Malignant tumours with a mitotic index >2/10 HPF had a positive choline peak

A choline peak may still be identified in some benign tumours

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weiss SW, Goldblum JR (2001) Enzinger and Weiss’s soft tissue tumors, 4th edn. Mosby-Harcourt Brace Company, St. Louis, MO, USA

    Google Scholar 

  2. Papagelopoulos PJ, Mavrogenis AF, Badekas A et al (2003) Foot malignancies: a multidisciplinary approach. Foot Ankle Clin 8:751–763

    Article  PubMed  Google Scholar 

  3. Moulton JS, Blebea JS, Dunco DM et al (1995) MR imaging of soft-tissue masses: diagnostic efficacy and value of distinguishing between benign and malignant lesions. AJR Am J Roentgenol 164:1191–1199

    PubMed  CAS  Google Scholar 

  4. Campanacci M (1999) Bone and soft tissue tumors: clinical features, imaging, pathology and treatment, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  5. Berquist TH, Ehman AL, Richardson ML (1987) Magnetic resonance of the musculoskeletal system. Raven, New York

    Google Scholar 

  6. Wetzel LH, Levine E (1990) Soft tissue tumors of the foot: value of MR imaging for specific diagnosis. AJR Am J Roentgenol 155:1025–1030

    PubMed  CAS  Google Scholar 

  7. Berquist TH, Ehman RL, King BF et al (1990) Value of MR imaging in differentiating benign from malignant soft-tissue masses: study of 95 lesions. AJR Am J Roentgenol 155:1251–1255

    PubMed  CAS  Google Scholar 

  8. Arkun R, Memis A, Akalin T et al (1997) Liposarcoma of soft tissue: MRI findings with pathologic correlation. Skeletal Radiol 26:167–172

    Article  PubMed  CAS  Google Scholar 

  9. Crim JR, Seeger LL, Yao L et al (1992) Diagnosis of soft-tissue masses with MR imaging: can benign masses be differentiated from malignant ones? Radiology 185:581–586

    PubMed  CAS  Google Scholar 

  10. Verstraete KL, De Deene Y, Roels H et al (1994) Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging-parametric “first-pass” images depict tissue vascularization and perfusion. Radiology 192:835–843

    PubMed  CAS  Google Scholar 

  11. Fletcher BD, Reddick WE, Taylor JS et al (1996) Dynamic MR imaging of musculoskeletal neoplasms. Radiology 200:869–872

    PubMed  CAS  Google Scholar 

  12. Verstraete KL, Van der Woude HJ, Hogendoorn PC et al (1996) Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 6:311–321

    Article  PubMed  CAS  Google Scholar 

  13. Verstraete KL, Van der Woude HJ (2001) Dynamic contrast-enhanced magnetic resonance imaging. In: De Schepper AM (ed) Imaging of soft tissue tumors, 2nd edn. Springer, Berlin, pp 83–104

    Google Scholar 

  14. Van Rijswijk CSP, Geirnaerdt MJA, Hogendoorn PCW et al (2004) Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 233:493–502

    Article  PubMed  Google Scholar 

  15. Verstraete KL, Dierick A, De Deene Y et al (1994) First-pass images of musculoskeletal lesions: a new and useful diagnostic application of dynamic contrast-enhanced MRI. Magn Reson Imaging 12:687–702

    Article  PubMed  CAS  Google Scholar 

  16. Payne GS, Leach MO (2006) Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 79:S16–S26

    Article  PubMed  CAS  Google Scholar 

  17. Gupta RK, Cloughesy TF, Sinha U et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neuro-Oncol 50:215–226

    Article  CAS  Google Scholar 

  18. Doganay S, Altinok T, Alkan A et al (2011) The role of MRS in the differentiation of benign and malignant soft tissue and bone tumors. Eur J Radiol 79:e33–e37

    Article  PubMed  Google Scholar 

  19. Wang CK, Li CW, Hsieh TJ et al (2004) Characterization of bone and soft-tissue tumors with in vivo 1H MR spectroscopy: initial results. Radiology 232:599–605

    Article  PubMed  Google Scholar 

  20. Delorme S, Weber MA (2006) Applications of MRS in the evaluation of focal malignant brain lesions. Cancer Imaging 6:95–99

    Article  PubMed  CAS  Google Scholar 

  21. Swindle P, McCredie S, Russell P et al (2003) Pathologic characterization of human prostate tissue with proton MR spectroscopy. Radiology 228:144–151

    Article  PubMed  Google Scholar 

  22. Cheng LL, Burns MA, Taylor JL et al (2005) Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res 65:3030–3034

    PubMed  CAS  Google Scholar 

  23. Ronen SM, Leach MO (2001) Breast imaging technology: imaging biochemistry - applications to breast cancer. Breast Cancer Res 3:36–40

    Article  PubMed  CAS  Google Scholar 

  24. Katz-Brull R, Seger D, Rivenson-Segal D et al (2002) Enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Res 62:1966–1970

    PubMed  CAS  Google Scholar 

  25. Fayad LM, Bluemke DA, McCarthy EF et al (2006) Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization. J Magn Reson Imaging 23(1):23–28

    Article  PubMed  Google Scholar 

  26. Fayad LM, Barker PB, Jacobs MA et al (2007) Characterization of musculoskeletal lesions on 3-T proton MR spectroscopy. AJR Am J Roentgenol 188:1513–1520

    Article  PubMed  Google Scholar 

  27. World Medical Association (2000) Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects, 5th rev. Edinburgh, Scotland

    Google Scholar 

  28. Bartella L, Morris EA, Dershaw DD et al (2006) Proton MR spectroscopy with choline peak as malignancy marker improves positive predictive value for breast cancer diagnosis: preliminary study. Radiology 239:686–692

    Article  PubMed  Google Scholar 

  29. Sardanelli F, Fausto A, Di Leo G et al (2009) In vivo proton MR spectroscopy of the breast using the total choline peak integral as a marker of malignancy. AJR Am J Roentgenol 192:1608–1617

    Article  PubMed  Google Scholar 

  30. Fayed N, Olmos S, Morales H et al (2006) Physical basis of magnetic resonance spectroscopy and its application to central nervous system diseases. Am J Appl Sci 3:1836–1845

    Article  CAS  Google Scholar 

  31. Sijens PE, van den Bent MJ, Nowak PJ et al (1997) 1H chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast. Magn Reson Med 37:222–225

    Article  PubMed  CAS  Google Scholar 

  32. Roebuck JR, Cecil KM, Schnall MD et al (1998) Human breast lesions: characterization with proton MR spectroscopy. Radiology 209:269–275

    PubMed  CAS  Google Scholar 

  33. Baek HM, Chen JH, Yu HJ et al (2008) Detection of choline signal in human breast lesions with chemical-shift imaging. J Magn Reson Imaging 27:1114–1121

    Article  PubMed  Google Scholar 

  34. Huang W, Fisher PR, Dulaimy K et al (2004) Detection of breast malignancy: diagnostic MR protocol for improved specificity. Radiology 232:585–591

    Article  PubMed  Google Scholar 

  35. WHO Classification of Tumours (2002) Pathology & genetics—Tumours of soft tissue and bone. IARC, Lyon

    Google Scholar 

  36. Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Statist Med 17:857–872

    Article  CAS  Google Scholar 

  37. Royal College of Obstetricians and Gynaecologists (2002) The investigation and management of the small-for-gestational-age fetus, guideline no.31. RCOG, London

    Google Scholar 

  38. Dowdy S, Weardon S, Chilko D (2004) Statistics for research, 3rd edn. Wiley, New Jersey

    Book  Google Scholar 

  39. Hashimoto K, Brownstein MH, Jakobiec FA (1974) Dermatofibrosarcoma protuberans. A tumor with perineural and endoneural cell features. Arch Dermatol 110:874–885

    Article  PubMed  CAS  Google Scholar 

  40. Brenner W, Schaefler K, Chhabra H et al (1975) Dermatofibrosarcoma protuberans metastatic to a regional lymph node. Report of a case and review. Cancer 36:1897–1902

    Article  PubMed  CAS  Google Scholar 

  41. Herminghaus S, Pilatus U, Möller-Hartmann W et al (2002) Increased choline levels coincide with enhanced proliferative activity of human neuroepithelial brain tumors. NMR Biomed 15:385–392

    Article  PubMed  CAS  Google Scholar 

  42. Krouwer HGJ, Kim TA, Rand SD et al (1998) Single-voxel proton MR spectroscopy of nonneoplastic brain lesions suggestive of a neoplasm. AJNR Am J Neuroradiol 19:1695–1703

    PubMed  CAS  Google Scholar 

  43. Bitsch A, Bruhn H, Vougioukas V et al (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627

    PubMed  CAS  Google Scholar 

  44. Parikh J, Hyare H, Saifuddin A (2002) The imaging features of post-traumatic Myositis Ossificans, with emphasis on MRI. Clin Radiol 57:1058–1066

    Article  PubMed  CAS  Google Scholar 

  45. Manaster BJ, May DA, Disler DG (2007) Musculoskeletal Imaging, 3rd edn. Mosby Elsevier, Philadelphia

    Google Scholar 

  46. Blamire AM (2008) The technology of MRI - the next 10 years? Br J Radiol 81:601–617

    Article  PubMed  CAS  Google Scholar 

  47. Qayyum A (2009) MR spectroscopy of the liver: principles and clinical applications. RadioGraphics 29:1653–1664

    Article  PubMed  Google Scholar 

  48. Erturk SM, Alberich-Bayarri A, Herrmann KA et al (2009) Use of 3.0-T MR imaging for evaluation of the abdomen. RadioGraphics 29:1547–1563

    Article  PubMed  Google Scholar 

  49. Ricci E, Pitt A, Keller PJ et al (2000) Effect of voxel position on single-voxel MR spectroscopy findings. AJNR Am J Neuroradiol 21:367–37

    PubMed  CAS  Google Scholar 

  50. Bolan PJ, Nelson MT, Yee D et al (2005) Imaging in breast cancer: magnetic resonance spectroscopy. Research 7:149–152

    CAS  Google Scholar 

  51. Li BSY, Regal J, Gonen O (2001) SNR versus resolution in 3D 1H MRS of the human brain at high magnetic fields. Magn Reson Med 46:1049–1053

    Article  PubMed  CAS  Google Scholar 

  52. Usenius JPR, Kauppinen RA, Vainio PA et al (1994) Quantitative metabolite patterns of human brain tumors: detection by 1H NMR spectroscopy in vivo and in vitro. J Comput Assist Tomo 18:705–713

    Article  CAS  Google Scholar 

  53. Manton DJ, Lowry M, Blackband SJ et al (1995) Determination of proton metabolite concentrations and relaxation parameters in normal human brain and intracranial tumours. NMR Biomed 8:104–112

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, F., Mazzetti, S., Grignani, G. et al. In vivo characterisation of soft tissue tumours by 1.5-T proton MR spectroscopy. Eur Radiol 22, 1131–1139 (2012). https://doi.org/10.1007/s00330-011-2350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-011-2350-9

Keywords

Navigation