Skip to main content
Log in

Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: central Andes of Peru

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 06 April 2016

Abstract

The analysis of annual or seasonal data can lead to misinterpretation of spatio-temporal rainfall distribution. A high percentage of total annual precipitation can fall in just a few days, causing floods or landslides. Large economic losses from these events are particularly common in Peru, where the daily precipitation has been poorly investigated. This study presents a spatio-temporal analysis of concentration index over the Mantaro River basin in the central Peruvian Andes. Daily rainfall data recorded at 46 rainfall stations between 1974 and 2004 were selected in this study. In terms of average values, the analysis of daily rainfall indicates that low-intensity events account for 38 % of rainy days but only approximately 9 % of the total rain amount. In contrast, high- and very high-intensity events account for 35 % of rainy days and approximately 71 % of the total rain amount. The results also indicate higher concentration and lower intensity over the Northern and Central regions, compared to Southern region of the basin. Rainfall concentration gives evidence of why some of these places are more likely to be affected by extreme weather events; spatial distribution of event intensity can be partly explained by daily rainfall heterogeneity and orography. Moreover, Mann–Kendall test mostly shows a significant change toward a weaker seasonality of daily precipitation distribution over high-mountain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alijani B, O’Brien J, Yarnal B (2008) Spatial analysis of precipitation intensity and concentration in Iran. Theor Appl Climatol 94:107–124. doi:10.1007/s00704-007-0344-y

    Article  Google Scholar 

  • Brooks CEP, Carruthers N (1953) Handbook of statistical methods in meteorology. Meteorological Office, London

    Google Scholar 

  • Brunet-Moret Y (1979) Homogénéisation des précipitations. Cahiers ORSTOM Sér Hydrol 16:3–4

    Google Scholar 

  • Buytaert W, Celleri R, Willems P (2006) Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol 329:413–421. doi:10.1016/j.jhydrol.2006.02.031. ISSN:0022-1694

  • Celleri R, Willems P, Buytaert W, Feyen J (2007) Space–time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol Process 21:3316–3327. doi:10.1002/hyp.6575

    Article  Google Scholar 

  • Cortesi N, Gonzalez-Hidalgo JC, Brunetti M, Martin-Vide J (2012) Daily precipitation concentration across Europe 1971–2010. Nat Hazards Earth Syst Sci 12:2799–2810. doi:10.5194/nhess-12-2799-2012

    Article  Google Scholar 

  • Coscarelli R, Caloiero T (2012) Analysis of daily and monthly rainfall concentration in Southern Italy (Calabria region). J Hydrol 416–417:145–156. doi:10.1016/j.jhydrol.2011.11.047

    Article  Google Scholar 

  • De Luis M, Gonzalez-Hidalgo JC, Brunetti M, Longares LA (2011) Precipitation concentration changes in Spain 1946–2005. Nat Hazards Earth Syst Sci 11:1259–1265. doi:10.5194/nhess-11-1259-2011

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Cocheneau G, Filizola N, Lavado W, de Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia and Ecuador). Int J Climatol 29:1574–1594. doi:10.1002/joc.1791

    Article  Google Scholar 

  • Garreaud RD (1999) Multiscale analysis of the summertime precipitation over the central Andes. Mon Weather Rev 127(5):901–921

    Article  Google Scholar 

  • Giráldez L, Silva Y, Trasmonte G (2012) Impacto de los veranillos en la agricultura del valle del Mantaro. Libro Manejo de riesgos de desastres ante eventos meteorológicos extremos en el valle del Mantaro, Volumen II. Resultados del proyecto MAREMEX. Instituto Geofísico del Perú, Lima

  • Hiez G (1977) L’homogénéité des données pluviométriques. Cahiers ORSTOM Sér Hydrol 14:129–172

  • IGP (2005a) Vulnerabilidad actual y futura ante el cambio climático y medidas de adaptación en la Cuenca del Río Mantaro. Fondo Editorial del CONAM, Lima

    Google Scholar 

  • IGP (2005b) Diagnóstico de la cuenca del río Mantaro bajo la visión de cambio climático. Fondo Editorial CONAM, Lima

    Google Scholar 

  • IGP (2005c) Atlas Climatológico de precipitaciones y temperaturas en la Cuenca del Mantaro. Fondo Editorial CONAM, Lima

    Google Scholar 

  • IGP (2012) Manejo de riesgos de desastres ante eventos meteorológicos extremos en el valle delMantaro, Volumen II. Resultados del proyecto MAREMEX. Instituto Geofísico del Perú, Lima

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Jolliffe IT, Hope PB (1996) Representation of daily rainfall distributions using normalized rainfall curves. Int J Climatol 16:1157–1163

    Article  Google Scholar 

  • Junquas C, Li L, Vera CS, Le Treut H, Takahashi K (2015) Influence of South America orography on summer time precipitation in Southeastern South America. Clim Dyn. doi:10.1007/s00382-015-2814-8

    Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Lavado WC, Labat D, Ronchail J, Espinoza JC, Guyot JL (2012) Trends in rainfall and temperature in the Peruvian Amazon-Andes basin over the last 40 years (1965–2007). Hydrol Process 27:2944–2957. doi:10.1002/hyp.9418

    Google Scholar 

  • Lichtenstern A (2013) Kriging methods in spatial statistics, Bachelor’s Thesis, Department of Mathematics, Tecnische Universität München

  • López-Moreno I, Fontaneda S, Bazo J, Revuelto J, Azorin-Molina C, Valero-Garcés B, Morán-Tejeda E, Vicente-Serrano SM, Zubieta R, Alejo-Cochachín J (2014) Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru. Glob Planet Change 112(2014):1–11. doi:10.1016/j.gloplacha.2013.10.010

    Article  Google Scholar 

  • Lowman LEL, Barros AP (2014) Investigating links between climate and orography in the central Andes: coupling erosion and precipitation using a physical-statistical model. J Geophys Res Earth Surf 119:1322–1353. doi:10.1002/2013JF002940

    Article  Google Scholar 

  • Ly S, Charles C, Degré A (2011) Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Ourthe and Ambleve catchments, Belgium. Hydrol Earth Syst Sci 15:2259–2274. doi:10.5194/hess-15-2259-2011

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Martin-Vide J (2004) Spatial distribution of a daily precipitation concentration index in Peninsular Spain. Int J Climatol 24:959–971. doi:10.1002/joc.1030

    Article  Google Scholar 

  • Montecinos A, Aceituno P (2003) Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J Clim 16:281–296. doi:10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2

    Article  Google Scholar 

  • Montecinos A, Díaz A, Aceituno P (2000) Seasonal diagnostic and predictability of rainfall in subtropical South America based on tropical Pacific SST. J Clim 13:746–758. doi:10.1175/1520-0442(2000)013<0746:SDAPOR>2.0.CO;2

    Article  Google Scholar 

  • Pepin E, Guyot J, ArmijosE Bazan H, Fraizy P, Moquet JS, Noriega L, Lavado W, Pombosa R, Vauchel P (2013) Climatic control on eastern Andean denudation rates (Central Cordillera from Ecuador to Bolivia). J S Am Earth Sci 44:85–93. doi:10.1016/j.jsames.2012.12.010

    Article  Google Scholar 

  • Ramos MC, Martinez JA (2006) Trends in precipitation concentration and extremes in the Mediterranean Penedès—Anoia Region, Ne Spain. Clim Change 74:457–474. doi:10.1007/s10584-006-3458-9

    Article  Google Scholar 

  • Rutllant J, Fuenzalida H (1991) Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. Int J Climatol 11:63–76. doi:10.1002/joc.3370110105

    Article  Google Scholar 

  • Saavedra N, Müller EP, Foppiano AJ (2002) Monthly mean rainfall frequency model for the Central Chile coast: some climatic inferences. Int J Climatol 22:1495–1509. doi:10.1002/joc.806

    Article  Google Scholar 

  • Sarricolea P, Herrera MJ, Araya C (2013) Análisis de la concentración diaria de las precipitaciones en Chile central y su relación con la componente zonal (subtropicalidad) y meridiana (orográfica). Investig Geogr Chile 45:37–50

    Google Scholar 

  • Shi P, Qiao X, Chen X, Zhou M, Qu S, Ma X, Zhang Z (2013a) Spatial distribution and temporal trends in daily and monthly precipitation concentration indices in the upper reaches of the Huai River, China. Stoch Environ Res Risk Assess. doi:10.1007/s00477-013-0740-z

    Google Scholar 

  • Shi W, Yu X, Liao W, Wang Y, Jia B (2013b) Spatial and temporal variability of daily precipitation concentration in the Lancang River basin. J Hydrol. doi:10.1016/j.jhydrol.2013.05.002

    Google Scholar 

  • Silva Y, Takahashi K, Chávez R (2008) Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes). Adv Geosci 14:261–264. doi:10.5194/adgeo-14-261-2008

    Article  Google Scholar 

  • Suhaila J, Jemain AA (2012) Spatial analysis of daily rainfall intensity and concentration index in Peninsular Malaysia. Theor Appl Climatol 108:235–245. doi:10.1007/s00704-011-0529-2

    Article  Google Scholar 

  • Sulca J, Vuille M, Silva Y, Takahashi K (2016) Teleconnections between the Peruvian Central Andes and Northeast Brazil during extreme rainfall events in Austral summer. J Hydrometeorol 17:499–515. doi:10.1175/JHM-D-15-0034.1

    Article  Google Scholar 

  • Zhang Q, Xu CY, Gemmer M, Chen YQ, Liu CL (2009) Changing properties of precipitation concentration in the Pearl River basin, China. Stoch Environ Res Risk Assess 23:377–385. doi:10.1007/s00477-008-0225-7

    Article  CAS  Google Scholar 

  • Zhiqing X, Yin D, Aijun J, Yuguo D (2005) Climatic trends of different intensity heavy precipitation events concentration in China. J Geogr Sci 15(4):459–466. doi:10.1360/gs050409

    Article  Google Scholar 

  • Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040. doi:10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2

    Article  Google Scholar 

  • Zubieta R, Lagos P (2010) Cambios de la superficie glaciar en la cordillera Huaytapallana: Periodo 1976–2006. Libro Cambio climático en la cuenca del río Mantaro. Balance de 7 años de estudio en la cuenca del Mantaro. Instituto Geofísico del Perú

  • Zubieta R, Saavedra M (2013) Distribución espacial del índice de concentración de precipitación diaria en los Andes centrales peruanos: valle del río Mantaro. Revista del Encuentro Científico Internacional ECI Peru 9(2):61–70

  • Zubieta R, Quijano J, Latínez K, Guillermo P (2012) Evaluación de las zonas de peligro frente a inundaciones por máximas avenidas en el valle del río Mantaro. Manejo de riesgos de desastres ante eventos meteorológicos extremos en el valle del Mantaro, vol II. Proyecto Maremex Mantaro. Instituto Geofísico del Perú, Lima

  • Zubieta R, Geritana A, Espinoza JC, Lavado W (2015) Impacts of satellite-based precipitation datasets on rainfall-runoff modeling of the western Amazon basin of Peru and Ecuador. J Hydrol. doi:10.1016/j.jhydrol.2015.06.064

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Instituto Geofísico del Perú (IGP), Servicio Nacional de Meteorologia e Hidrologia (SENAMHI), International Research Institute (IRI) and ELECTRO-PERU for providing observed data; and J. Chunga for their support in data preprocessing. The first author thanks suggestions and comments raised during the MAREMEX project (IGP), which was supported by the International Development Research Centre: IDRC-Canada. Suggestions from D. Ramirez and A. Verastegui and B. Fraser were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Zubieta.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00477-016-1247-1.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3386 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubieta, R., Saavedra, M., Silva, Y. et al. Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: central Andes of Peru. Stoch Environ Res Risk Assess 31, 1305–1318 (2017). https://doi.org/10.1007/s00477-016-1235-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-016-1235-5

Keywords

Navigation