Skip to main content

Advertisement

Log in

Socioeconomic Risks of Extreme El Niño Event-Related Road Damages in Peru

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

A Correction to this article was published on 14 July 2022

This article has been updated

Abstract

This study evaluates the socioeconomic risk that extreme El Niño event-related road damages present to Peru by combining an environmental modelling of events’ occurrences in the country with a quantitative modelling of their effects on its economy. The dynamic of occurrence of events is modelled as a stochastic process with a vector autoregressive representation based on historical climatic data, and simulated over a 10-year period with a non-parametric bootstrap procedure. The indirect consequences of events’ related road damages are addressed with a multiregional dynamic computable general equilibrium model through an increase in interregional transportation costs and, more originally, a negative externality effect on activities’ output, which is estimated beforehand using a firm database. We find that extreme El Niño events constitute a significant one-off disaster risk for the country, threatening shifts of − 2.8% in GDP and + 1.9% in poverty rates with an annual probability p = 1.4%. We further show that they also present a longer-term risk, leading to average annual deviations from normal trend by − 0.8% in GDP and + 0.4% in poverty rate with a probability p = 12.6% over a 10-year period. However, we finally show that Peru might reduce these socioeconomic risks associated with these non-frequent but recurrent climatic shocks in constructing more disaster-resilient road infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Map 1
Map 2

Similar content being viewed by others

Availability of Data and Material

Data are available at the end of the manuscript.

Code Availability

Codes are available at the end of the manuscript.

Change history

References

  1. INDECI. (1998). Consolidado de danos producidos por fenómeno el Niño 1997–1998. Direcciones regionales de defensa civil, Lima, Perú.

  2. INDECI. (2018). Boletín Estadístico Virtual de la Gestión Reactiva. Dirección de Políticas, Planes y Evaluación, Nº 09 - Ano 5 - Jul 2018. Lima, Perú.

  3. French, A., & Mechler, R. (2017). Managing El Niño risks under uncertainty in Peru: Learning from the past for a more disaster-resilient future. Laxenburg, Austria: International Institute for Applied Systems Analysis.

  4. Perry, S. J., McGregor S., Sen Gupta A., & England, M. H. (2017). Future changes to El Niño–Southern Oscillation temperature and precipitation teleconnections. Geophysical Research Letter, 44(10) 608–616. https://doi.org/10.1002/2017GL074509

  5. Cai, W., Wang, G., Dewitte, B., Wu, L., Santoso, A., Takahashi, K., Yang, Y., Carréric, A., & Mcphaden, M. J. (2018). Increased variability of eastern Pacific El Niño under greenhouse warming. Nature, 564(7735), 201–206. https://doi.org/10.1038/s41586-018-0776-9

    Article  CAS  Google Scholar 

  6. Wang, B., Luo, X., Yang, Y. M., Sun, W., Cane, M. A., Cai, W., & Liu, J. (2019). Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences, 116(45), 22512–22517. https://doi.org/10.1073/pnas.1911130116

    Article  CAS  Google Scholar 

  7. Gulizia, C., & Pirotte, M. (2022). Characterization of simulated extreme El Niño events and projected impacts on South American climate extremes by a set of Coupled Model Intercomparison Project Phase 5 global climate models. International Journal of Climatology, 42(1), 48–62. https://doi.org/10.1002/joc.7231

    Article  Google Scholar 

  8. Timmermann, A., An, S., Kug, J., et al. (2018). El Niño–Southern Oscillation complexity. Nature, 559, 535–545. https://doi.org/10.1038/s41586-018-0252-6

  9. Chapman, D., Cane, M. A., Henderson, N., Lee, D. E., & Chen, C. (2015). A vector autoregressive ENSO prediction model. Journal of Climate, 28(21), 8511–8520. https://doi.org/10.1175/jcli-d-15-0306.1

    Article  Google Scholar 

  10. Lee, D. E., Chapman, D., Henderson, N., Chen, C., & Cane, M. A. (2016). Multilevel vector autoregressive prediction of sea surface temperature in the North Tropical Atlantic Ocean and the Caribbean Sea. Climate Dynamics, 47(1–2), 95–106. https://doi.org/10.1007/s00382-015-2825-5

    Article  Google Scholar 

  11. Rose, A. (2004). Economic principles, issues, and research priorities in hazard loss estimation. In: Okuyama Y., Chang S.E. (eds) Modeling spatial and economic impacts of disasters. Advances in Spatial Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24787-6_2

  12. Okuyama, Y. (2007). Economic modelling for disaster impact analysis: Past, present, and future. Economic Systems Research, 19(2), 115–124. https://doi.org/10.1080/09535310701328435

    Article  Google Scholar 

  13. Kelly, S. (2015). Estimating economic loss from cascading infrastructure failure: A perspective on modelling interdependency. Infrastruct. Complex, 2, 7. https://doi.org/10.1186/s40551-015-0010-y

    Article  Google Scholar 

  14. Meyer, V., Becker, N., Markantonis, V., Schwarze, R., van den Bergh, J. C. J. M., Bouwer, L. M., & Viavattene, C. (2013). Review article: Assessing the costs of natural hazards–state of the art and knowledge gaps. Natural Hazards and Earth System Sciences, 13(5), 1351–1373. https://doi.org/10.5194/nhess-13-1351-2013

    Article  Google Scholar 

  15. Jahn, M. (2015). Economics of extreme weather events: Terminology and regional impact models. Weather and Climate Extremes, 10, 29–39. https://doi.org/10.1016/j.wace.2015.08.005

    Article  Google Scholar 

  16. Botzen, W. J. W., Deschenes, O., & Sanders, M. (2019). The economic impacts of natural disasters: A review of models and empirical studies. Review of Environmental Economics and Policy, 13(2), 167–188. https://doi.org/10.1093/reep/rez004

    Article  Google Scholar 

  17. Rodriguez-Oreggia, E., De La Fuente, A., De La Torre, R., Moreno, H., & A. (2013). Natural disasters, human development and poverty at the municipal level in Mexico. The Journal of Development Studies, 49(3), 442–455. https://doi.org/10.1080/00220388.2012.700398

    Article  Google Scholar 

  18. Felbermayr, G., & Gröschl, J. K. (2014). Naturally negative: The growth effects of natural disasters. Journal of Development Economics, 111, 92–106. https://doi.org/10.1016/j.jdeveco.2014.07.004

    Article  Google Scholar 

  19. Baez, J. E., Lucchetti, L., Genoni, M., & E., & Salazar M. (2017). Gone with the storm: Rainfall shocks and household wellbeing in Guatemala. The Journal of Development Studies, 53(8), 1253–1271. https://doi.org/10.1080/00220388.2016.1224853

    Article  Google Scholar 

  20. Salazar, C., Hailemariam, A., & Fisker, P. (2019). Weather shocks and spatial market efficiency: Evidence from Mozambique. The Journal of Development Studies, 55(9), 1967–1982. https://doi.org/10.1080/00220388.2018.1528352

    Article  Google Scholar 

  21. Hallegatte, S. (2008). An adaptive regional input-output model and its application to the assessment of the economic cost of Katrina. Risk Analysis, 28(3), 779–799. https://doi.org/10.1111/j.1539-6924.2008.01046.x

    Article  Google Scholar 

  22. Okuyama, Y., & Santos, J. R. (2014). Disaster impact and input–output analysis. Economic Systems Research, 26(1), 1–12. https://doi.org/10.1080/09535314.2013.871505

    Article  Google Scholar 

  23. Colon, C., Hallegatte, S., & Rozenberg, J. (2021). Criticality analysis of a country’s transport network via an agent-based supply chain model. Nat Sustain, 4, 209–215. https://doi.org/10.1038/s41893-020-00649-4

    Article  Google Scholar 

  24. Rose, A., & Liao, S.-Y. (2005). Modeling regional economic resilience to disasters: A computable general equilibrium analysis of water service disruptions. Journal of Regional Science, 45(1), 75–112. https://doi.org/10.1111/j.0022-4146.2005.00365.x

    Article  Google Scholar 

  25. Pauw, K., Thurlow, J., Bachu, M., & Van Seventer, D. E. (2012). The economic costs of extreme weather events: A hydrometeorological CGE analysis for Malawi. Environment and Development Economics, 16(2), 177–198. https://doi.org/10.1017/s1355770x10000471

    Article  Google Scholar 

  26. Koks, E. E., Carrera, L., Jonkeren, O., Aerts, J. C. J. H., Husby, T. G., Thissen, M., Standardi, G., & Mysiak, J. (2016). Regional disaster impact analysis: Comparing input–output and computable general equilibrium models. Natural Hazards and Earth Systems Sciences, 16(8), 1911–1924. https://doi.org/10.5194/nhess-16-1911-2016

    Article  Google Scholar 

  27. McDonald, G. W., Cronin, S. J., Kim, J., Smith, N. J., Murray, C., & Procter, J. (2017). Computable general equilibrium modelling of economic impacts from volcanic event scenarios at regional and national scale, Mt. Taranaki. New Zealand. Bulletin of Volcanology, 79, 1–18.

    Article  Google Scholar 

  28. Hallegatte, S., Rentschler, J., & Rozenberg, J. (2019). Lifelines: The resilient infrastructure opportunity. Sustainable Infrastructure; Washington, DC: World Bank. © World Bank. Retrieved from https://openknowledge.worldbank.org/handle/10986/31805. License: CC BY 3.0 IGO.

  29. Koks, E., Rozenberg, J., Zorn, C., Tariverdi, M., Vousdoukas, M., Fraser, S. A., Hall, J., & Hallegatte, S. (2019). A global multi-hazard risk analysis of road and railway infrastructure assets. Nature Communications, 10, 2677. https://doi.org/10.1038/s41467-019-10442-3

  30. Rozenberg, J., Espinet Alegre, X.; Avner, P., Fox, C., Hallegatte, S., Koks, E., Rentschler, J., & Tariverdi, M. (2019). From a rocky road to smooth sailing: Building transport resilience to natural disasters. Background paper for Lifelines; World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/31913 License: CC BY 3.0 IGO

  31. World Bank. (2016). Improving the reliability of Peru’s road network. Washington, DC: World Bank. Retrieved from: https://cdn.www.gob.pe/uploads/document/file/31326/21953_Improving_the_reliability_Peru_Road_Network.pdf20180706-19116-1s68wlo.pdf

  32. Rozenberg, J., Briceno-Garmendia, C., Lu, X., Bonzanigo, L., & Moroz, H. (2017). Improving the resilience of Peru’s road network to climate events. World Bank, Washington, DC. Retrieved from https://openknowledge.worldbank.org/handle/10986/26355

  33. Shahrokhi Shahraki, H., & Bachmann, C. (2018). Designing computable general equilibrium models for transportation applications. Transport Reviews, 38(6), 737–764. https://doi.org/10.1080/01441647.2018.1426651

    Article  Google Scholar 

  34. Aschauer, D. A. (1989). Is public expenditure productive? Journal of Monetary Economics, 23(2), 177–200. https://doi.org/10.1016/0304-3932(89)90047-0

    Article  Google Scholar 

  35. Munnell, A. H. (1992). Policy watch: Infrastructure investment and economic growth. Journal of Economic Perspectives, 6(4), 189–198. https://doi.org/10.1257/jep.6.4.189

    Article  Google Scholar 

  36. CEPAL. (1983). Los desastres naturales en Bolivia, Ecuador y Perú. E/CEPAL/G.1274. Santiago, Chile.

  37. CAF – Andean Development Corporation. (2000). El Fenomeno El Niño 1997–1998: Memoria, retos y Soluciones. CAF, Volumen V. Lima. CAF.

  38. Takahashi, K. (2017). Fenómeno El Niño: “Global” vs “Costero”. Boletín Técnico El Niño – IGP, 4(4), 4–7.

  39. Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S., & DeWitt, D. G. (2012). Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bulletin of the American Meteorological Society, 93(5), 631–651. https://doi.org/10.1175/bams-d-11-00111.1

    Article  Google Scholar 

  40. Chen, M., Kumar, A., & Wang, W. (2015). A study of the predictability of sea surface temperature over the tropics. Climate Dynamics, 44(7–8), 1767–1776. https://doi.org/10.1007/s00382-014-2187-4

    Article  Google Scholar 

  41. Fresoli, D., Ruiz, E., & Pascual, L. (2015). Bootstrap multi-step forecasts of non-Gaussian VAR models. International Journal of Forecasting, 31(3), 834–848. https://doi.org/10.1016/j.ijforecast.2014.04.001

    Article  Google Scholar 

  42. Decaluwé, B., Lemelin, A., Robichaud, V., & Maisonnave, H. (2013). PEP-1-t standard model: Single-country, recursive dynamic version. Poverty and Economic Policy Network, Université Laval, Québec.

    Google Scholar 

  43. Giesecke, J. A., & Madden, J. R. (2013). Regional computable general equilibrium modeling. In P. B. Dixon & D. W. Jorgenson (Eds.), Handbook of computable general equilibrium modeling (Vol. 1A, pp. 379–475). Elsevier.

    Chapter  Google Scholar 

  44. Ghaith, Z., Kulshreshtha, S., Natcher, D., & Cameron, B. T. (2021). Regional computable general equilibrium models: A review. Journal of Policy Modeling, Elsevier, 43(3), 710–724.

    Article  Google Scholar 

  45. Thurlow, J., Morley, S., Nin-Pratt, A. (2009). Lagging regions and development strategies: The case of Peru. IFPRI Discussion Papers 898, International Food Policy Research Institute (IFPRI).

  46. Seminario B., Zegarra M.A., Palomino L. (2020). Peruvian regional inequality: 1847–2017. In: Tirado-Fabregat D.A., Badia-Miró M., Willebald H. (eds) Time and space. Palgrave Studies in Economic History. Palgrave Macmillan, Cham. http://doi-org-443.webvpn.fjmu.edu.cnhttps://doi.org/10.1007/978-3-030-47553-6_10

  47. Boccanfuso, D., Joanis, M., Richard, P., & Savard, L. (2014). A comparative analysis of funding schemes for public infrastructure spending in Quebec. Applied Economics, 46(22), 2653–2664. https://doi.org/10.1080/00036846.2014.909576

    Article  Google Scholar 

  48. Mosa, A. A., Grethe, H., & Siddig, K. (2020). Macroeconomic effects of improving road transport infrastructure in Ethiopia: A computable general equilibrium model analysis. Journal of Economics and International Finance, 12(3), 105–119. https://doi.org/10.5897/JEIF2020.1048

    Article  Google Scholar 

  49. Ministry of Production. (2016). Modelo Económico de Equilibrio General Computable para simular impactos de Políticas de Desarrollo Productivo. Dirección de Estudios Económicos de Mype e Industria (DEMI), Lima, Perú.

  50. Montaud, J.-M., Dávalos, J., & Pécastaing, N. (2020). Potential effects of scaling-up infrastructure in Peru: A general equilibrium model-based analysis. Applied Economics, 52(27), 2895–2912. https://doi.org/10.1080/00036846.2019.1696940

    Article  Google Scholar 

  51. Romp, W., & de Haan, J. (2007). Public capital and economic growth: A critical survey. Perspektiven Der Wirtschaftspolitik, 8(S1), 6–52. https://doi.org/10.1111/j.1468-2516.2007.00242.x

    Article  Google Scholar 

  52. Straub, S. (2011). Infrastructure and development: A critical appraisal of the macro-level literature. Journal of Development Studies, 47(5), 683–708. https://doi.org/10.1080/00220388.2010.509785

    Article  Google Scholar 

  53. Bom, P. R. D., & Ligthart, J. E. (2014). What have we learned from three decades of research on the productivity of public capital? Journal of Economic Surveys, 28(5), 889–916. https://doi.org/10.1111/joes.12037

    Article  Google Scholar 

  54. Tiberti, L., Cicowiez, M., & Cockburn, J. (2018). A top-down with behaviour (TDB) microsimulation toolkit for distributive analysis. International Journal of Microsimulation, 11(2), 191–213.

    Article  Google Scholar 

  55. Ministry of Transport and Communications. (2016). Programa de Inversiones 2011–2016 - Gestión estrategica – Corredores logísticos. Oficina general de planeamiento y presupuesto. Lima, Perú.

  56. World Economic Forum. (2019). Global Competitiveness Report 2019. The World Economic Forum. Retrieved from www.weforum.org/gcr

Download references

Acknowledgements

The authors would like to thank Juan Salavarriga for its research assistance and the two anonymous reviewers for their comments and suggestions for improving this study.

Author information

Authors and Affiliations

Authors

Contributions

J.M Montaud: CGE modelling and writing of the paper. J. Davalos: econometric modelling. N. Pecastaing: data collection and writing of the paper.

Corresponding author

Correspondence to Jean-Marc Montaud.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montaud, JM., Dávalos, J. & Pécastaing, N. Socioeconomic Risks of Extreme El Niño Event-Related Road Damages in Peru. Environ Model Assess 27, 831–851 (2022). https://doi.org/10.1007/s10666-022-09830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09830-9

Keywords

Navigation