Skip to main content
Log in

Simple and highly sensitive 2-hydroxy-1,4-naphthoquinone/glassy carbon sensor for the electrochemical detection of [Ni(CN)4]2− in metallurgical industry wastewater

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The pollution generated by the metallurgical industry effluents represents a serious issue for human health and the environment where the presence of cyanide species is particularly dangerous even at low concentration. In this context, we have developed an electrochemical sensor based on a glassy carbon (GC) electrode modified with 2-hydroxy-1,4-naphthoquinone (HNFQ) for the detection of the \({[\text{Ni}({\text{CN})}_{4}]}_{(\text{aq})}^{2-}\) complex ion from galvanic wastewater. It was characterized by physicochemical techniques such as Raman spectroscopy, electrochemical spectroscopy impedance, and UV–Visible spectroscopy. The electrochemical detection of the complex ion \({[\text{Ni}({\text{CN})}_{4}]}_{(\text{aq})}^{2-}\) was carried out by the square-wave voltammetry electrochemical technique. The GC/HNFQ electrochemical sensor features a wide linear range of 1.28 × 10–5–1.63 × 10–3 mol L−1 with a determination coefficient R2 of 0.9993, a limit of detection (LOD) of 3.31 ± 2.21 µmol L−1, and a limit of quantification (LOQ) of 10.93 ± 7.31 µmol L−1. Moreover, the proposed sensor displays excellent selectivity to the interfering ions (\({\text{K}}^{+}\), \({\text{Na}}^{+}\), \({\text{Cl}}^{-}\), \({\text{NO}}_{3}^{-}\), \({\text{SO}}_{4}^{2-},\) and \({\text{HCO}}_{3}^{-}\)). Finally, in order to investigate the molecular interplay between the involved species at the electrode-solution interface, a computational study in the framework of DFT has been conducted, which suggests a parallel orientation of a formed Ni(II)-bis(2-hydroxy-1,4-naphthoquinonate) complex and a graphitic domain of the glassy carbon surface.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sabeen AH, Kamaruddin SNB, Noor ZZ (2019) Environmental impacts assessment of industrial wastewater treatment system using electroless nickel plating and life cycle assessment approaches. Int J Environ Sci Technol 16:3171–3182. https://doi.org/10.1007/s13762-018-1974-6

    Article  CAS  Google Scholar 

  2. Gorokhovsky A, Vikulova M, Escalante-Garcia JI et al (2020) Utilization of nickel-electroplating wastewaters in manufacturing of photocatalysts for water purification. Process Saf Environ Prot 134:208–216. https://doi.org/10.1016/j.psep.2019.11.040

    Article  CAS  Google Scholar 

  3. Chen M, Lu W, Hou Z et al (2017) Heavy metal pollution in soil associated with a large-scale cyanidation gold mining region in southeast of Jilin, China. Environ Sci Pollut Res 24:3084–3096. https://doi.org/10.1007/s11356-016-7968-3

    Article  CAS  Google Scholar 

  4. GracePavithra K, Jaikumar V, Kumar PS, SundarRajan PS (2019) A review on cleaner strategies for chromium industrial wastewater: present research and future perspective. J Clean Prod 228:580–593

    Article  CAS  Google Scholar 

  5. Moscatello N, Swayambhu G, Jones CH et al (2018) Continuous removal of copper, magnesium, and nickel from industrial wastewater utilizing the natural product yersiniabactin immobilized within a packed-bed column. Chem Eng J 343:173–179. https://doi.org/10.1016/j.cej.2018.02.093

    Article  CAS  Google Scholar 

  6. Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: a comprehensive review. J Ind Eng Chem 56:35–44

    Article  CAS  Google Scholar 

  7. Benvenuti T, Siqueira Rodrigues MA, Bernardes AM, Zoppas-Ferreira J (2017) Closing the loop in the electroplating industry by electrodialysis. J Clean Prod 155:130–138. https://doi.org/10.1016/j.jclepro.2016.05.139

    Article  CAS  Google Scholar 

  8. Sivakumar D, Nouri J, Modhini TM, Deepalakshmi K (2018) Nickel removal from electroplating industry wastewater: a bamboo activated carbon. Glob J Environ Sci Manag 4:325–338. https://doi.org/10.22034/GJESM.2018.03.006

  9. Dermentzis KI, Marmanis DI, Christoforidis AK, et al Recovery of metallic nickel from waste sludge produced by electrocoagulation of nickel bearing electroplating effluents

  10. Pertile TS, Birriel EJ (2017) Treatment of hydrocyanic galvanic effluent by electrocoagulation: optimization of operating parameters using statistical techniques and a coupled polarity inverter. Korean J Chem Eng 34:2631–2640. https://doi.org/10.1007/s11814-017-0178-y

    Article  CAS  Google Scholar 

  11. Kumar Meher A, Labhsetwar N, Bansiwal A (2018) An improved method for direct estimation of free cyanide in drinking water by ion chromatography-pulsed amperometry detection (IC-PAD) on gold working electrode. Food Chem 240:131–138. https://doi.org/10.1016/j.foodchem.2017.07.041

    Article  CAS  PubMed  Google Scholar 

  12. Betancourt-Buitrago LA, Hernandez-Ramirez A, Colina-Marquez JA et al (2019) Recent developments in the photocatalytic treatment of cyanide wastewater: an approach to remediation and recovery of metals. Processes 7:225. https://doi.org/10.3390/pr7040225

    Article  CAS  Google Scholar 

  13. Song Y, Lei S, Zhou J, Tian Y (2016) Removal of heavy metals and cyanide from gold mine waste-water by adsorption and electric adsorption. J Chem Technol Biotechnol 91:2539–2544. https://doi.org/10.1002/jctb.4859

    Article  CAS  Google Scholar 

  14. Sengan M, Veerappan A (2019) N-myristoyltaurine capped copper nanoparticles for selective colorimetric detection of Hg 2+ in wastewater and as effective chemocatalyst for organic dye degradation. Microchem J 148:1–9. https://doi.org/10.1016/j.microc.2019.04.049

    Article  CAS  Google Scholar 

  15. Sasaki Y, Minamiki T, Tokito S, Minami T (2017) A molecular self-assembled colourimetric chemosensor array for simultaneous detection of metal ions in water. Chem Commun 53:6561–6564. https://doi.org/10.1039/c7cc03218h

    Article  CAS  Google Scholar 

  16. Azhari S, Sathishkumar P, Ahamad R et al (2016) Fabrication of a composite modified glassy carbon electrode: a highly selective, sensitive and rapid electrochemical sensor for silver ion detection in river water samples. Anal Methods 8:5712–5721. https://doi.org/10.1039/c6ay01336h

    Article  CAS  Google Scholar 

  17. Nisar A, Shah A, Zahid A et al (2018) Sensitive and selective detection of multiple metal ions using amino acids modified glassy carbon electrodes. J Electrochem Soc 165:B67–B73. https://doi.org/10.1149/2.0151803jes

    Article  CAS  Google Scholar 

  18. Huang SS, Liu L, Mei LP et al (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797. https://doi.org/10.1007/s00604-015-1717-z

    Article  CAS  Google Scholar 

  19. Rodrigues JA, Rodrigues CM, Almeida PJ et al (2011) Increased sensitivity of anodic stripping voltammetry at the hanging mercury drop electrode by ultracathodic deposition. Anal Chim Acta 701:152–156. https://doi.org/10.1016/J.ACA.2011.05.031

    Article  CAS  PubMed  Google Scholar 

  20. Xu K, Pérez-Ràfols C, Marchoud A (2021) Anodic stripping voltammetry with the hanging mercury drop electrode for trace metal detection in soil samples. Chemosens 9:107 https://doi.org/10.3390/CHEMOSENSORS9050107

  21. El Tall O, Jaffrezic-Renault N, Sigaud M, Vittori O (2007) Anodic stripping voltammetry of heavy metals at nanocrystalline boron-doped diamond electrode. Electroanalysis 19:1152–1159. https://doi.org/10.1002/ELAN.200603834

    Article  Google Scholar 

  22. Barvin RKB, Prakash P, Ganesh V, Jeyaprabha B (2019) Highly selective and sensitive sensing of toxic mercury ions utilizing carbon quantum dot-modified glassy carbon electrode. Int J Environ Res 13:1015–1023. https://doi.org/10.1007/s41742-019-00236-2

    Article  CAS  Google Scholar 

  23. Vimala A, Vedhi C (2019) Electrochemical sensors for heavy metals detection in gracilaria corticata using multiwalled carbon nanotubes modified glassy carbon electrode. J Anal Chem 74:276–285. https://doi.org/10.1134/S106193481903002X

    Article  Google Scholar 

  24. Hassan KM, Elhaddad GM, AbdelAzzem M (2019) Voltammetric determination of cadmium(II), lead(II) and copper(II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly(1,8-diaminonaphthalene). Microchim Acta 186:1–10. https://doi.org/10.1007/s00604-019-3552-0

    Article  CAS  Google Scholar 

  25. Kokab T, Shah A, Iftikhar FJ et al (2019) Amino acid-fabricated glassy carbon electrode for efficient simultaneous sensing of Zinc(II), Cadmium(II), Copper(II), and Mercury(II) ions. ACS Omega 4:22057–22068. https://doi.org/10.1021/acsomega.9b03189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng Y, Luo R, Xu Y et al (2020) Adsorbate-mediated deposition of noble-metal nanoparticles on carbon substrates for electrocatalysis. ACS Appl Energy Mater. https://doi.org/10.1021/acsaem.0c00706

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu Y, Zheng Y, Wang C, Chen Q (2019) An all-organic aqueous battery powered by adsorbed quinone. ACS Appl Mater Interfaces 11:23222–23228. https://doi.org/10.1021/acsami.9b05159

    Article  CAS  PubMed  Google Scholar 

  28. Kim HJ, Han YK (2016) How can we describe the adsorption of quinones on activated carbon surfaces? Curr Appl Phys 16:1437–1441. https://doi.org/10.1016/j.cap.2016.08.009

    Article  Google Scholar 

  29. Parthiban C, Ciattini S, Chelazzi L, Elango KP (2016) Colorimetric sensing of anions by Cu(II), Co(II), Ni(II) and Zn(II) complexes of naphthoquinone-imidazole hybrid—influence of complex formation on selectivity and sensing medium. Sens Actuators B 231:768–778. https://doi.org/10.1016/j.snb.2016.03.106

    Article  CAS  Google Scholar 

  30. Shalini Devi KS, Senthil Kumar A (2018) A blood-serum sulfide selective electrochemical sensor based on a 9,10-phenanthrenequinone-tethered graphene oxide modified electrode. Analyst 143:3114–3123. https://doi.org/10.1039/c8an00756j

    Article  CAS  PubMed  Google Scholar 

  31. Jayasudha P, Manivannan R, Ciattini S et al (2017) Selective sensing of cyanide in aqueous solution by quinone-indole ensembles—quantitative effect of substituents on the HBD property of the receptor moiety. Sens Actuators B 242:736–745. https://doi.org/10.1016/j.snb.2016.11.117

    Article  CAS  Google Scholar 

  32. Jayasudha P, Manivannan R, Elango KP (2017) Benzoquinone based chemodosimeters for selective and sensitive colorimetric and turn-on fluorescent sensing of cyanide in water. Sens Actuators B 251:380–388. https://doi.org/10.1016/j.snb.2017.05.105

    Article  CAS  Google Scholar 

  33. Kasumov VT, Taş E, Kartal I et al (2006) Complexation of metal ions with 3,5-di-tert-butyl-1,2-benzoquinone-1-monooxime. ESR Studies of Radical Intermediates. 52:207–227. https://doi.org/10.1080/00958970108022588

    Article  Google Scholar 

  34. Jali BR (2021) A mini-review: Quinones and their derivatives for selective and specific detection of specific cations. 11:11679–11699. https://doi.org/10.33263/BRIAC114.1167911699

  35. Yuasa J, Suenobu T, Fukuzumi S (2006) Binding modes in metal ion complexes of Quinones and semiquinone radical anions: electron-transfer reactivity. ChemPhysChem 7:942–954. https://doi.org/10.1002/CPHC.200500640

    Article  CAS  PubMed  Google Scholar 

  36. Kelsall GH (1991) Cyanide oxidation at nickel anodes: I. Thermodynamics of and Systems at 298 K. J Electrochem Soc 138:108. https://doi.org/10.1149/1.2085519

  37. Cukman D, Pravdic V (1978) Croatica Chemica Acta. An Investigation of the electrochemical reactions of a nickel cyanide complex at mercury electrode by cyclic voltammetry 51(3):243–247

    CAS  Google Scholar 

  38. Orlik M, Galus Z (1988) Electrochemistry of the nickel-cyanide system at mercury electrodes. Part III. The role of intermediate products in the mechanism of ni(cn)42- electroreduction at mercury electrodes. J Electroanal Chem 248:139–158. https://doi.org/10.1016/0022-0728(88)85157-X

    Article  CAS  Google Scholar 

  39. Orlik M, Galus Z (1990) Electrochemistry of the nickel-cyanide system at mercury electrodes: Part VI. On the decrease in the Ni(CN)2–4 electroreduction wave caused by repulsive double-layer effects. J Electroanal Chem Interfacial Electrochem 296:101–115. https://doi.org/10.1016/0022-0728(90)87236-D

    Article  CAS  Google Scholar 

  40. Ferreira MA, Barros AA (2002) Determination of As(III) and arsenic(V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode. Anal Chim Acta 459:151–159. https://doi.org/10.1016/S0003-2670(02)00086-7

    Article  CAS  Google Scholar 

  41. Katz E, Schlereth DD, Schmidt HL (1994) Electrochemical study of pyrroloquinoline quinone covalently immobilized as a monolayer onto a cystamine-modified gold electrode. J Electroanal Chem 367:59–70. https://doi.org/10.1016/0022-0728(93)03010-M

    Article  CAS  Google Scholar 

  42. Sedenho GC, De Porcellinis D, Jing Y et al (2020) Effect of molecular structure of quinones and carbon electrode surfaces on the interfacial electron transfer process. ACS Appl Energy Mater 3:1933–1943. https://doi.org/10.1021/ACSAEM.9B02357/SUPPL_FILE/AE9B02357_SI_001.PDF

    Article  CAS  Google Scholar 

  43. Roy S, Sarkar B, Bubrin D et al (2008) Stabilizing the elusive ortho-quinone/copper (I) oxidation state combination through π/π interaction in an isolated complex. J Am Chem Soc 130:15230–15231

    Article  CAS  Google Scholar 

  44. Frisch M, Trucks GW, Schlegel HB, et al (2009) Gaussian 09, revision a. 02, gaussian. Inc, Wallingford, CT 200:28

  45. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  46. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  47. Mennucci B, Tomasi J, Cammi R et al (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113

    Article  CAS  Google Scholar 

  48. Wen X, Zhang D, Shi L et al (2012) Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. J Mater Chem 22:23835–23844. https://doi.org/10.1039/c2jm35138b

    Article  CAS  Google Scholar 

  49. Heo JY, Cho CH, Jeon HS et al (2011) Enhanced Raman spectrum of lawsone on Ag surface: vibrational analyses, frequency shifts, and molecular geometry. Spectrochim Acta A 83:425–431. https://doi.org/10.1016/j.saa.2011.08.057

    Article  CAS  Google Scholar 

  50. Kathawate L, Shinde Y, Yadav R, et al Thermal and spectral properties of alkali metal complexes of 2-hydroxy-1,4-naphthoquinone. https://doi.org/10.1007/s10973-013-3204-2

  51. Cárdenas Riojas AA, Wong A, Planes GA et al (2019) Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanide in river water samples. Sens Actuators B 287:544–550. https://doi.org/10.1016/J.SNB.2019.02.053

    Article  Google Scholar 

  52. Cardenas-Riojas AA, Cornejo-Herrera AF, Muedas-Taipe G et al (2021) Electrochemical sensor based on 1,8-dihydroxyanthraquinone adsorbed on a glassy carbon electrode for the detection of [Cu(CN)3]2-(aq) in alkaline cyanide copper plating baths waste. J Electroanal Chem 880:114909. https://doi.org/10.1016/j.jelechem.2020.114909

    Article  CAS  Google Scholar 

  53. Lin Q, Li Q, Batchelor-McAuley C, Compton RG (2015) Two-electron, two-proton oxidation of catechol: kinetics and apparent catalysis. J Phys Chem C 119:1489–1495

    Article  CAS  Google Scholar 

  54. Zhang Y, Hu L, Liu X et al (2015) Highly-sensitive and rapid detection of ponceau 4R and tartrazine in drinks using alumina microfibers-based electrochemical sensor. Food Chem 166:352–357. https://doi.org/10.1016/J.FOODCHEM.2014.06.048

    Article  CAS  PubMed  Google Scholar 

  55. Hijji YM, Barare B, Zhang Y (2012) Lawsone (2-hydroxy-1,4-naphthoquinone) as a sensitive cyanide and acetate sensor. Sens Actuators B 169:106–112. https://doi.org/10.1016/J.SNB.2012.03.067

    Article  CAS  Google Scholar 

  56. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  57. Vivek JP, Monsur A, Burgess IJ (2013) Differential capacity and chronocoulometry studies of a quaternary ammonium surfactant adsorbed on Au(111). Surf Interface Anal 45:1402–1409. https://doi.org/10.1002/sia.5300

    Article  CAS  Google Scholar 

  58. Inzelt G (2010) Chronocoulometry. Electroanalytical methods: guide to experiments and applications. Springer, Berlin, pp 147–158

    Chapter  Google Scholar 

  59. Pérez Domínguez JC, Higuera Cobos ÓF (2011) Comportamiento electroquímico del cianuro. Rev Científica Ing y Desarro 24

  60. Seghiouer A, Chevalet J, Barhoun A, Lantelme F (1998) Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modelling. J Electroanal Chem 442:113–123

    Article  CAS  Google Scholar 

  61. Casella IG, Gatta M (2000) Electrochemical and XPS characterization of composite modified electrodes obtained by nickel deposition on noble metals. Anal Chem 72:2969–2975. https://doi.org/10.1021/ac9913863

    Article  CAS  PubMed  Google Scholar 

  62. Dai J, Deng D, Yuan Y et al (2016) Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue). Microchim Acta 183:1553–1561. https://doi.org/10.1007/s00604-016-1773-z

    Article  CAS  Google Scholar 

  63. Wang J (1994) Selectivity coefficients for amperometric sensors. Talanta 41:857–863. https://doi.org/10.1016/0039-9140(94)E0079-7

    Article  CAS  PubMed  Google Scholar 

  64. Sebroski JR, Ode RH (1997) Method comparison and evaluation for the analysis of weak acid-dissociable cyanide. Environ Sci Technol 31:52–57. https://doi.org/10.1021/es960016i

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank CONCYTEC/FONDECYT (Contract 210-2015) for the funding granted for carrying out the research and FONDECYT (Contract 237-2015-FONDECYT) for the provision of a doctoral scholarship. The authors acknowledge the MaSCA (Maison de la Simulation de Champagne-Ardenne, France) for computing facilities (http://romeo.univ-reims.fr) and gratefully acknowledge the financial support of the project FC-MF-10-2019 provided by the Vicerrectorado de Investigación of the Universidad Nacional de Ingeniería (National University of Engineering), Lima – Perú.

Funding

Funding was provided by FONDECYT (Contract 210-2015, Contract 237-2015-FONDECYT) and Vicerrectorado de Investigación of the Universidad Nacional de Ingeniería (FC-MF-10-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélica M. Baena-Moncada.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardenas-Riojas, A.A., Muedas-Taipe, G., La Rosa-Toro, A. et al. Simple and highly sensitive 2-hydroxy-1,4-naphthoquinone/glassy carbon sensor for the electrochemical detection of [Ni(CN)4]2− in metallurgical industry wastewater. J Appl Electrochem 52, 1053–1065 (2022). https://doi.org/10.1007/s10800-022-01691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01691-0

Keywords

Navigation