Skip to main content

Advertisement

Log in

Effect of nitrogen limitation on growth, biochemical composition, and cell ultrastructure of the microalga Picocystis salinarum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

In recent years biodiesel production has attracted worldwide attention due to the awareness of fossil fuel depletion and microalgae biomass is considered a promising raw material for its formulation. The present study evaluated the effects of different levels of nitrogen limitation (37.5, 18.75, 9.375 mg L−1 NaNO3) on the growth, cell ultrastructure, and biochemical composition of a halophilic native strain of the green alga Picocystis salinarum as a potential raw material source for biodiesel. During a culture period of 20 days, growth measurements and photosynthetic pigments were estimated. Cell density, dry weight, and chlorophylls a, b content decreased with time as nitrogen limitation increase; however, carotenoid content increased. In addition, nitrogen limitation caused an progressive increase in the lipid and carbohydrate yield and a decrease in protein. The high N limitation (9.375 mg L−1) had a significant effect on the accumulation of total lipid content (33.87% dry weight). Carbohydrate content (30.98% dry weight) and protein content (1.89% dry weight) decrease. The lipid content showed a differential FAME profile with high saturated fatty acid values (996.08 μg g−1 dry weight) mainly palmitic acid, compare with the unsaturated ones that showed low values under high N limitation. The gradual increase of lipid content was also corroborated by transmission electron microscopy images with a single large lipid droplet cell formation. Therefore, evaluation of the algal culture conditions such as N limitation, as a strategy to maximize lipid content and improve the fatty acid profile in unexplored strain of P. salinarum, showed a potential biomass yield as a suitable candidate for biodiesel production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ANOVA:

Analysis of variance

DW:

Dry weight

FAME:

Fatty acid methyl ester

HPLC:

High-performance liquid chromatography

LD:

Lipid droplet

N:

Nitrogen

PCA:

Principal component analysis

PUFA:

Polyunsaturated fatty acid

SD:

Standard deviation

SFA:

Saturated fatty acid

TEM:

Transmission electron microscope

UFA:

Unsaturated fatty acid

References

  • Anand J, Arumugam M (2015) Enhanced lipid accumulation and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresour Technol 188:190–194

    Article  CAS  PubMed  Google Scholar 

  • Benavente-Valdés JR, Aguilar C, Contreras-Esquivel JC, Méndez-Zavala A, Montañez J (2016) Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol Rep 10:117–125

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102:1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li J, Dong W, Zhang X, Tyagi RD, Drogui P, Surampalli RY (2018) The potential of microalgae in biodiesel production. Renew Sust Energ Rev 90:336–346

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cobos M, Paredes JD, Maddox JD, Vargas-Arana G, Flores L, Aguilar CP, Marapara JL, Castro JC (2017) Isolation and characterization of native microalgae from the Peruvian Amazon with potential for biodiesel production. Energies 10:1–16

    Article  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48:1146–1151

    Article  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  PubMed  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Deng X, Fei X, Li Y (2011) The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. Afr J Microbiol Res 5:260–270

    CAS  Google Scholar 

  • Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335

    Article  CAS  Google Scholar 

  • Eltgroth ML, Watwood RL, Wolfe GV (2005) Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi. J Phycol 41:1000–1009

    Article  CAS  Google Scholar 

  • Francisco ÉC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403

    Article  CAS  Google Scholar 

  • Glabonjat RA, Blum JS, Miller LG, Webb SM, Stolz JF, Francesconi KA, Oremland RS (2020) Arsenolipids in cultured Picocystis strain ML and their occurrence in biota and sediment from Mono Lake, California. Life 10:1–21

    Article  CAS  Google Scholar 

  • Goold H, Beisson F, Peltier G, Li-Beisson Y (2015) Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep 34:545–555

    Article  CAS  PubMed  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, NY, pp 29–60

    Chapter  Google Scholar 

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635

    Article  CAS  Google Scholar 

  • Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Soga T, Tomita M (2013) Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics 9:178–187

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    Article  CAS  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83:823–833

    Article  CAS  Google Scholar 

  • Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Kochert G (1978) Carbohydrate determination by the phenol sulfuric acid method. In: Hellebust J, Craigie J (eds) Handbook of phycological methods. Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 95–97

    Google Scholar 

  • Lopes Dos Santos A, Pollina T, Gourvil P, Corre E, Marie D, Garrido JL, Rodríguez F, Noël MH, Vaulot D, Eikrem W (2017) Chloropicophyceae, a new class of picophytoplanktonic prasinophytes. Sci Rep 7:1–20

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Lv H, Cui X, Wang S, Jia S (2016) Metabolic profiling of Dunaliella salina shifting cultivation conditions to nitrogen deprivation. Metab Open Acess 6:2153

    Google Scholar 

  • Malavasi V, Soru S, Cao G (2020) Extremophile microalgae: the potential for biotechnological application. J Phycol 56:559–573

  • Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645

    Article  CAS  PubMed  Google Scholar 

  • Menezes RS, Leles MIG, Soares AT, Brandão PI, Franco M, Filho NRA, Sant’anna CL, Vieira AAH (2013) Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Quim Nova 36:10–15

    Article  CAS  Google Scholar 

  • Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki M, Kawano S (2013) Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour Technol 129:150–155

    Article  CAS  PubMed  Google Scholar 

  • Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, Cerutti H (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50–59

    Article  CAS  PubMed  Google Scholar 

  • Ördög V, Stirk WA, Bálint P, van Staden J, Lovász C (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914

    Article  CAS  Google Scholar 

  • Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154

    Article  CAS  PubMed  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Roopnarain A, Gray VM, Sym S (2014) Influence of nitrogen stress on Isochrysis galbana strain U4, a candidate for biodiesel production. Phycol Res 62:237–249

    Article  CAS  Google Scholar 

  • San Pedro A, González-López CV, Acién FG, Molina-Grima E (2013) Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour Technol 134:353–361

    Article  CAS  PubMed  Google Scholar 

  • Sathasivam R, Pongpadung P, Praiboon J, Chirapart A, Trakulnaleamsai S, Roytrakul S, Juntawong N (2018) Optimizing NaCl and KNO3 concentrations for high β-carotene production in photobioreactor by Dunaliella salina KU11 isolated from saline soil sample. Chiang Mai J Sci 45:106–115

    CAS  Google Scholar 

  • Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylidès C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza LS, Simioni C, Bouzon ZL, Schneider RCS, Gressler P, Miotto MC, Rossi MJ, Rörig LR (2017) Morphological and ultrastructural characterization of the acidophilic and lipid-producer strain Chlamydomonas acidophila LAFIC-004 (Chlorophyta) under different culture conditions. Protoplasma 254:1385–1398

    Article  CAS  PubMed  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analyses. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  • Tan XB, Lam MK, Uemura Y, Lim JW, Wong CY, Lee KT (2018) Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chin J Chem Eng 26:17–30

    Article  CAS  Google Scholar 

  • Tandon P, Jin Q (2017) Microalgae culture enhancement through key microbial approaches. Renew Sust Energ Rev 80:1089–1099

    Article  CAS  Google Scholar 

  • Tarazona-Delgado R, Terreros HM, Astocondor MM, Huatuco MM (2017) Picocystis salinarum (Prasinophyceae, Chlorophyta) en las Salinas de Chilca, Lima, primer registro para el Perú. Arnaldoa 24:557–566

    Article  Google Scholar 

  • Wang S, Lambert W, Giang S, Goericke R, Palenik B (2014) Microalgal assemblages in a poikilohaline pond. J Phycol 50:303–309

    Article  PubMed  Google Scholar 

  • Weiss SB, Kennedy EP, Kiyasu JY (1960) The enzymatic synthesis of triglycerides. J Biol Chem 235:40–44

    Article  CAS  PubMed  Google Scholar 

  • Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444

    Article  CAS  PubMed  Google Scholar 

  • Young EB, Beardall J (2003) Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle. J Phycol 39:897–905

    Article  CAS  Google Scholar 

  • Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol 152:292–298

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ronald Tarazona Delgado benefited by a scholarship from CAPES, and this work is part of his MSc thesis. The authors would also like to thank technicians of the Laboratory of Cellular Ultrastructure Carlos Alberto Redins, Federal University of Espírito Santo, for its support in transmission electron microscopy.

Funding

This work was funded by the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES), Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions in conceptualizing, drafting, developing and reviewing the manuscript. The paper was reviewed and approved by all authors prior to submission for peer review.

Corresponding author

Correspondence to Ronald Tarazona Delgado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarazona Delgado, R., Guarieiro, M.d., Antunes, P.W. et al. Effect of nitrogen limitation on growth, biochemical composition, and cell ultrastructure of the microalga Picocystis salinarum. J Appl Phycol 33, 2083–2092 (2021). https://doi.org/10.1007/s10811-021-02462-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02462-8

Keywords

Navigation