Skip to main content
Log in

Model for Strain-Induced Precipitation Kinetics in Microalloyed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 03 April 2014

Abstract

Based on Dutta and Sellars’s expression for the start of strain-induced precipitation in microalloyed steels, a new model has been constructed which takes into account the influence of variables such as microalloying element percentages, strain, temperature, strain rate, and grain size. Although the equation given by these authors reproduces the typical “C” shape of the precipitation start time (P s) curve well, the expression is not reliable for all cases. Recrystallization–precipitation–time–temperature diagrams have been plotted thanks to a new experimental study carried out by means of hot torsion tests on approximately twenty microalloyed steels with different Nb, V, and Ti contents. Mathematical analysis of the results recommends the modification of some parameters such as the supersaturation ratio (K s) and constant B, which is no longer a constant, but a function of K s when the latter is calculated at the nose temperature (T N) of the P s curve. The value of parameter B is deduced from the minimum point or nose of the P s curve, where ∂t 0.05/∂T is equal to zero, and it can be demonstrated that B cannot be a constant. The new expressions for these parameters are derived from the latest studies undertaken by the authors and this work represents an attempt to improve the model. The expressions are now more consistent and predict the precipitation–time–temperature curves with remarkable accuracy. The model for strain-induced precipitation kinetics is completed by means of Avrami’s equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. H.L. Andrade, M.G. Akben and J.J. Jonas: Metall. Trans. A, 1983, vol. 14, p.p. 1967-77.

    Article  Google Scholar 

  2. O. Kwon: ISIJ Int., 1992, vol. 32, p.p. 350-58.

    Article  Google Scholar 

  3. S.F. Medina and J.E. Mancilla: ISIJ Int., 1996, vol. 36, p.p. 1063-69.

    Article  Google Scholar 

  4. M.J. Luton, R. Dorvel and R.A. Petkovic: Metall. Trans. A, 1980, vol. 11, p.p. 411-20.

    Article  Google Scholar 

  5. M. Gómez, L. Rancel and S.F. Medina: Mater. Sci. Eng. A, 2009, vol. 506, p.p. 165-73.

    Article  Google Scholar 

  6. S.F. Medina, A. Quispe, P. Valles and J.L. Baños: ISIJ Int., 1999, vol. 39, p.p. 913-22.

    Article  Google Scholar 

  7. B. Dutta and C.M. Sellars: Mater. Sci. Technol., 1987, vol. 3, p.p. 197-207.

    Article  Google Scholar 

  8. S.F. Medina, A. Quispe and M. Gómez: Steel Res. Int., 2005, vol. 76, p.p. 527-31.

    Google Scholar 

  9. S.F. Medina and A. Quispe: ISIJ Int., 1996, vol. 36, p.p. 1295-1300.

    Article  Google Scholar 

  10. S.F. Medina and A. Quispe: Mater. Sci. Technol., 2000, vol. 16, p.p. 635-42.

    Article  Google Scholar 

  11. A. Quispe, S.F. Medina, M. Gómez and J.I. Chaves: Mater. Sci. Eng. A, 2007, vol. 447, pp. 11-18.

    Article  Google Scholar 

  12. A. Faessel: Rev. Metall. Cah. Inf. Tech., 1976, vol. 33, p.p. 875-92.

    Google Scholar 

  13. E.T. Turkdogan: Iron Steelmaker, 1989, vol. 16, p.p. 61-75.

    Google Scholar 

  14. P.E. Reynolds: Ironmaking Steelmaking, 1991, vol. 8, p.p. 52-58.

    Google Scholar 

  15. J.S. Pertula and L.P. Karjalainem: Mater. Sci. Technol., 1998, vol. 14, p.p. 626-30.

    Article  Google Scholar 

  16. S. Sakui, T. Sakai and K. Takeishi: Trans. ISIJ, 1977, vol. 17, p.p. 718-25.

    Google Scholar 

  17. S.F. Medina and C.A. Hernández: Acta Mater., 1996, vol. 44, p.p. 137-48.

    Article  Google Scholar 

  18. S.H. Park, S. Yue and J.J. Jonas: Metall. Trans. A, 1992, vol. 23, p.p. 1641-51.

    Article  Google Scholar 

  19. H. Oikawa: Tetsu-to-Hagane, 1982, vol. 68, p.p. 1489-97.

    Google Scholar 

  20. S.F. Medina, M. Gómez and P. P. Gómez: J. Mater. Sci., 2010, vol. 45, p.p. 5553-57.

    Article  Google Scholar 

  21. M. Gómez, L. Rancel and S.F. Medina: Mater. Sci. Forum, 2010, vol. 638-642, p.p. 3388-93.

    Article  Google Scholar 

  22. C.M. Sellars: Proceeding of International Conference on Hot Working and Forming Processes, Metal Society, London, 1980, pp. 3–15.

  23. O. Kwon and A. DeArdo: Acta Metall. Mater., 1990, vol. 39, p.p. 529-38.

    Article  Google Scholar 

  24. A. Quispe, S.F. Medina, J.M. Cabrera and J.M. Prado: Mater. Sci. Technol., 1999, vol. 15, p.p. 635-42.

    Article  Google Scholar 

  25. M. Gómez, S. F. Medina, A. Quispe and P. Valles: ISIJ Int., 2002, vol. 42, p.p. 423-31.

    Article  Google Scholar 

  26. J.H. Beynon and C.M. Sellars: ISIJ Int., 1992, vol. 32, p.p. 359-62.

    Article  Google Scholar 

  27. S.F. Medina, A. Quispe and M. Gómez: Mater. Sci. Technol., 2003, vol. 19, p.p. 99-108.

    Article  Google Scholar 

  28. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.

    Article  Google Scholar 

  29. A. Laarasaoui and J.J. Jonas: Metall Trans A, 1991, vol. 22, p.p. 151-60.

    Google Scholar 

  30. P.D. Hodgson and R.K. Gibbs: ISIJ Int., 1992, vol. 32, p.p. 1329-38.

    Article  Google Scholar 

  31. O. Kwon and A.J. DeArdo: Acta Metall. Mater., 1990, vol. 39, pp. 529–38.

    Article  Google Scholar 

  32. S.F. Medina, A. Quispe and M. Gómez: Mat. Sci. Tech.,2001, vol. 17, p.p. 536-44.

    Article  Google Scholar 

  33. K.B. Kang, O. Kwon, W.B. Lee, and C.G. Park: Proceeding of 37th MWSP Conference, Vol. XXXIII, ISS, Hamilton, ON, 1996, pp. 689–702.

  34. J. Ardell: Acta Metall., 1972, vol. 20, pp. 61-71.

    Article  Google Scholar 

  35. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 1997.

    Google Scholar 

  36. K. Narita: Trans. Iron Steel Inst. Jpn, 1975, vol. 15, pp. 145-52.

    Google Scholar 

  37. T.N. Baker: Mater. Sci. Technol., 2009, vol. 25, p.p. 1083-1107.

    Article  Google Scholar 

  38. M. Gómez, S.F. Medina, P. Valles, and A. Quispe: Mater. Sci. Forum, 2005, vol. 480-481, pp. 489-94.

    Article  Google Scholar 

  39. W.J. Liu and J.J. Jonas: Processing Microstructure and Properties of HSLA Steels, The Minerals Metals & Materials Society, Pittsburgh, PA, 1988, pp. 39-49.

    Google Scholar 

  40. A.J. DeArdo: Int. Mater. Rev., 2003, vol. 48, p.p. 371-402.

    Article  Google Scholar 

  41. H. K. D. H. Bhadeshia and R.W.K. Honeycombe: Steels Microstructure and Properties, Elsevier, London, 1981.

    Google Scholar 

  42. A.W. Bowen and G.M. Leak: Metall. Trans. A, 1970, vol. 5, p.p. 1695-1700.

    Article  Google Scholar 

  43. T. Nakajima, S. Spiragelli, E. Evangelista and T. Endo: Mater. Trans., 2003, vol 44, p.p. 1802-08.

    Article  Google Scholar 

  44. M. Gómez, S.F. Medina and P. Valles: ISIJ Int., 2005, vol. 45, pp. 1711–20.

    Article  Google Scholar 

  45. M. Gómez, P. Valles and S.F. Medina: Mater. Sci. Eng. A, 2011, vol. 528, p.p. 4761-63.

    Article  Google Scholar 

  46. S. Vervynckt, K. Verbeken, B. Lopez and J.J. Jonas: Int. Mater. Rev., 2012, vol. 57, p.p. 187-207.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of this work by the ECSC (EU) and CICYT (Spain) Programs is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian F. Medina.

Additional information

Manuscript submitted January 8, 2013.

Appendix: Model Expressions for the Start of Precipitation

Appendix: Model Expressions for the Start of Precipitation

$$ t_{0.05} = A\varepsilon^{ - \beta } D^{\text{s}} Z^{\text{r}} \exp \left( {\frac{{Q_{\text{diff}} }}{\text{RT}}} \right)\exp \left[ {\frac{B}{{T^{3} \left( {\ln k_{\text{s}} } \right)^{2} }}} \right] $$
$$ T_{\text{N}} = T_{\text{s}} - T_{\text{N}} . $$

The expressions for T s are as follows:

V-Steels: \( T_{\text{s}} = \frac{7700}{{2.86 - \log \left( {{\text{V}}\,{\text{pct}}} \right)\left( {{\text{N}}\,{\text{pct}}} \right)}}. \)

Nb-Steels: \( T_{\text{s}} = \frac{9450}{{4.12 - \log \left( {{\text{Nb}}\,{\text{pct}}} \right)\left( {{\text{C}}\,{\text{pct}}} \right)^{0.7} \left( {{\text{N}}\,{\text{pct}}} \right)^{0.2} .}} \)

V-Steels: \( \Updelta T_{\text{N}} = 176.1\left[ {X_{\text{i}} } \right]^{0.382}. \)

Nb-Steels: \( \Updelta T_{\text{N}} = 139\left[ {X_{\text{i}} } \right]^{0.283} . \)

V-Ti and Nb-Ti Steels: \( \Updelta T_{\text{N}} = 118\left[ {X_{\text{i}} } \right]^{0.293} . \)

V-Steels: \( A({\text{s}}^{ - 1} ) = 3.142 \times 10^{ - 10} \exp \left( { - 1.20\ln K_{\text{s}} } \right). \)

Nb-Steels: \( A({\text{s}}^{ - 1} ) = 4.766 \times 10^{ - 11} \exp \left( { - 0.07\ln K_{\text{s}} } \right). \)

V-Ti and Nb-Ti Steels: \( A({\text{s}}^{ - 1} ) = 4.13 \times 10^{ - 10} \exp \left( { - 0.47\ln K_{\text{s}} } \right). \)

$$ \beta = 1.96\left[ {1 - \exp \left( { - 3.994 \times 10^{ - 2} \left( \frac{1}{w} \right)^{0.813} } \right)} \right] $$

w is the microalloying element content (Nb, V) (wt. pct).

$$ r = - 0.20 $$
$$ s = 0.5 $$
$$ Z({\text{s}}^{ - 1} ) = \dot{\varepsilon }\exp \left( {\frac{{Q_{\text{def}} }}{\text{RT}}} \right) $$
$$ Q_{\text{def}} ({\text{J}}\,{\text{mol}}^{ - 1} ) = 267,000 - 2535.52\left[ {\text{C}} \right] + 1010\left[ {\text{Mn}} \right] + 33,620.76\left[ {\text{Si}} \right] + 70,729.85\left[ {\text{Nb}} \right]^{0.565} + 31,673.46\left[ {\text{V}} \right] + 93,680.52\left[ {\text{Ti}} \right]^{0.5919} . $$

Nb-Steels:\( K_{\text{s}} = \frac{{\left[ {\text{Nb}} \right]\left[ {\text{C}} \right]^{0.7} \left[ N \right]^{0.2} }}{{\left[ {10^{{4.12 - \frac{9450}{T}}} } \right]}}. \)

V-Steels:\( K_{\text{s}} = \frac{{\left[ {\text{V}} \right]\left[ {\text{N}} \right]}}{{\left[ {10^{{2.86 - \frac{7700}{T}}} } \right]}}. \)

$$ B = 4.238 \times 10^{8} \exp \left( {1.689\ln K_{\text{s}} } \right). $$

To draw curve P s for any steel, the parameter t 0.05 is calculated as a function of the temperature, with fixed A and B values, calculated as a function of K s (for the corresponding T N temperature), ε β, and D 0.5. The other terms Z −0.2, exp(Q diff/RT), and exp(B/T 3(lnK s)2) will be calculated as a function of the temperature including K s.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medina, S.F., Quispe, A. & Gomez, M. Model for Strain-Induced Precipitation Kinetics in Microalloyed Steels. Metall Mater Trans A 45, 1524–1539 (2014). https://doi.org/10.1007/s11661-013-2068-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2068-1

Keywords

Navigation