Skip to main content
Log in

Synthesis and Characterization of Core@shell Β-NaYF4 to Yb3+/Ho3+@SiO2 with Different Ratios of Fluorine to Yttrium

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Fluorescent β-NaYF4 to Yb3+/Ho3+@SiO2 nanoparticles with variations in the ratios of fluorine and yttrium 4:1, 12:1, and 20:1, respectively, have been synthesized using the solvothermal method at a temperature of 200 ℃ and reaction time of 8 h and coated with SiO2 by the inverse microemulsion method. The obtained nanoparticles were characterized by XRD, UV–Vis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The characterizations show that at a ratio of 20:1 a hexagonal crystalline phase develops, with an absorption band centered at 980 nm, an upconversion fluorescence spectrum with centric peaks at 541 nm corresponding to green, and at 643 nm corresponding to red light; likewise, they present spherical morphologies and an average size of 80 nm with a core–shell coating thickness of 10 nm. Furthermore, these nanoparticles were found to possess a high upconversion of luminescence intensity compared to 4:1-cubic crystalline and 12:1-mixed (cubic and hexagonal) nanoparticles. On the other hand, it was shown that the SiO2 coating decreases the luminescence intensity. The results obtained go towards the continuation of research in a biomedical application with highly stable nanoparticles by silica coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Qiu, J. Shu, D. Tang, NaYF4: Yb, Er upconversion nanotransducer with in situ fabrication of Ag2S for near-infrared light-responsive photoelectrochemical biosensor. Anal. Chem. 90(20), 12214–12220 (2018)

    Article  Google Scholar 

  2. H. Gu, J. Wang, Y. Li, Z. Wang, Y. Fu, The core-shell-structured NaYF4: Er3+, Yb3+@ NaYF4: Eu3+ nanocrystals as dual-mode and multifunctional luminescent mechanism for high-performance dye-sensitized solar cells. Mater. Res. Bull. 108, 219–225 (2018)

    Article  Google Scholar 

  3. Q. Guo, J. Wu, Y. Yang, X. Liu, J. Jia, J. Dong, Z. Lan, J. Lin, M. Huang, Y. Wei and others, High performance perovskite solar cells based on β-NaYF4: Yb3+/Er3+/Sc3+@ NaYF4 core-shell upconversion nanoparticles. J Power Sources 426, 178–187 (2019)

  4. M. Habibi, P. Bagheri, N. Ghazyani, H. Zare-Behtash, E. Heydari, 3D printed optofluidic biosensor: NaYF4: Yb3+, Er3+ upconversion nano-emitters for temperature sensing. Sens. Actuators A: Phys. 326, 112734 (2021)

  5. A. Kavand, C. A. Serra, C. Blanck, M. Lenertz, N. Anton, T. F. Vandamme, Y. Mély, F. Przybilla, D. Chan-Seng, Controlled synthesis of NaYF4: Yb, Er upconversion nanocrystals as potential probe for bioimaging: a focus on heat treatment. ACS Applied Nano Maters. (2021)

  6. S. Lv, K. Zhang, L. Zhu, D. Tang, ZIF-8-assisted NaYF4: Yb, Tm@ ZnO converter with exonuclease III-powered DNA walker for near-infrared light responsive biosensor. Anal. Chem. 92, 1470–1476 (2019)

    Article  Google Scholar 

  7. N. Ojha, M. Bogdan, R. Galatus, L. Petit, Effect of heat-treatment on the upconversion of NaYF4: Yb3+, Er3+ nanocrystals containing silver phosphate glass. J Non-Crystalline Solids 544, 120243 (2020)

  8. F. Xu, Y. Sun, H. Gao, S. Jin, Z. Zhang, H. Zhang, G. Pan, M. Kang, X. Ma, Y. Mao, High-performance perovskite solar cells based on NaCsWO3@ NaYF4@ NaYF4: Yb. Er upconversion nanoparticles, ACS applied materials & interfaces 13, 2674–2684 (2021)

    Article  Google Scholar 

  9. X. Cui, D. Mathe, N. Kovács, I. Horváth, M. Jauregui-Osoro, R. Torres Martin de Rosales, G. E. D. Mullen, W. Wong, Y. Yan, D. Krüger and others, Synthesis, characterization, and application of core–shell Co0. 16Fe2. 84O4@ NaYF4 (Yb, Er) and Fe3O4@ NaYF4 (Yb, Tm) nanoparticle as Trimodal (MRI, PET/SPECT, and optical) imaging agents. Bioconjugate chem. 27, 319–328 (2016)

  10. H. Tan, S. Xie, J. Xu, N. Li, C. Zhang, L. Xu, J. Zheng, Branched NaYF4: Yb, Er up-conversion phosphors with luminescent properties for anti-counterfeiting application. Sci Adv. Mater. 9, 2223–2233 (2017)

    Article  Google Scholar 

  11. R. Puga, Sı́ntesis de partı́culas α-NaYF4: Er. Yb por el método Solvotermal para fluorescencia por upconversion, REVCIUNI 17, 39–41 (2014)

    Google Scholar 

  12. M. Wang, Y. Zhu, C. Mao, Synthesis of NIR-responsive NaYF4: Yb, Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced development of latent fingerprints on various smooth substrates. Langmuir 31, 7084–7090 (2015)

    Article  Google Scholar 

  13. Q. Wang, M.C. Tan, R. Zhuo, G.A. Kumar, R.E. Riman, A solvothermal route to size-and phase-controlled highly luminescent NaYF4: YbEr up-conversion nanocrystals. J nanosci nanotechnol 10, 1685–1692 (2010)

    Article  Google Scholar 

  14. R. Rafique, S. H. Baek, S.-J. Chang, A. R. Gul, T. J. Park and others, A facile hydrothermal synthesis of highly luminescent NaYF4: Yb3+/Er3+ upconversion nanoparticles and their biomonitoring capability. Maters. Sci. Eng.: 99, 1067–1074 (2019)

  15. T. Rinkel, A.N. Raj, S. Dühnen, M. Haase, Synthesis of 10 nm β-NaYF4: Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores. Angew. Chem. Int. Ed. 55, 1164–1167 (2016)

    Article  Google Scholar 

  16. S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, D. Jin, Advances in highly doped upconversion nanoparticles. Nature Comm. 9, 2415 (2018)

  17. F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu, Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135, 1839–1854 (2010)

    Article  ADS  Google Scholar 

  18. G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014)

    Article  Google Scholar 

  19. R.G. Geitenbeek, P.T. Prins, W. Albrecht, A. van Blaaderen, B.M. Weckhuysen, A. Meijerink, NaYF4: Er3+, Yb3+/SiO2 core/shell upconverting nanocrystals for luminescence thermometry up to 900 K. The J Phys Chem C 121, 3503–3510 (2017)

    Article  Google Scholar 

  20. L. Sun, T. Wang, Y. Sun, Z. Li, H. Song, B. Zhang, G. Zhou, H. Zhou, J. Hu, Fluorescence resonance energy transfer between NH2–NaYF4: Yb, Er/NaYF4@ SiO2 upconversion nanoparticles and gold nanoparticles for the detection of glutathione and cadmium ions. Talanta 207, 120294 (2020)

Download references

Acknowledgements

This work was supported by the National Council for Science, Technology and Technological Innovation (CONCYTEC) – FONFECYT—UNI and the Physics Institute of the National Autonomous University of Mexico (UNAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Champi.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rondan, W., Rivera, M., Acosta, D. et al. Synthesis and Characterization of Core@shell Β-NaYF4 to Yb3+/Ho3+@SiO2 with Different Ratios of Fluorine to Yttrium. Braz J Phys 52, 90 (2022). https://doi.org/10.1007/s13538-022-01097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01097-5

Keywords

Navigation