Skip to main content
Log in

\(NaYF_4:Ho^{3+},Yb^{3+}@PEI\) Upconversion Luminescence Microparticles as Multichannel Optical Sensors for the Identification of Coffee Varieties

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The luminescence of \(\beta -NaYF_4:Ho^{3+},Yb^{3+}@PEI\)-coffee microparticles suspended in water was studied using three different types of coffee from Peru: the first from Rioja, the second from Cuzco, and the third one from Chanchamayo. The upconversion (UC) emission of these microparticles was studied for emission wavelengths of 542nm, 645nm and 753nm corresponding to \(^5F_4,^5S_2~ \rightarrow ~^5I_8\); \(^5F_5 ~\rightarrow ~^5I_8\) and \(^5F_4,^5S_2~ \rightarrow ~^5I_7\) transitions respectively, varying the intensity of the 980nm diode laser used to excite the microparticles. The average relations \(Avg~I_{21}\), \(Avg~I_{31}\), and \(Avg~I_{23}\) of the UC emission intensities were used to identify the different coffee varieties. \(Avg~I_{21}=0.3\) for coffee A, and 0.17 for coffees B and C. \(Avg~I_{31}=0.26\) for coffee A and 0.17 for coffees B and C. \(Avg~I_{23}\) was used to identify coffee B from coffee C. For coffee, A, \(Avg~I_{23}=1.2\) for coffee A,1 for coffee B and 0.9 for coffee C. The UC emission changes in the samples showed that the \(\beta -NaYF_4:Ho^{3+},Yb^{3+}@ PEI\) microparticles can be used as microsensors in the identification of coffee varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Zhou, B. Shi, D. Jin, X. Liu, Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol 10(11), 924–936 (2015). https://doi.org/10.1038/nnano.2015.251

    Article  ADS  Google Scholar 

  2. Y. Li, L. Zhao, M. Xiao, Y. Huang, B. Dong, Z. Xu, L. Wan, W. Li, S. Wang, Synergic effects of upconversion microparticles \(\text{ NaYbF}_4:\text{ Ho}^{3+}\) and \(\text{ ZrO}_2\) enhanced the efficiency in hole-onductor-free perovskite solar cells. Nanoscale 10(46), 22003–22011 (2018). https://doi.org/10.1039/C8NR07225F

  3. N. Sano, K. Nishigaya, K. Tanabe, Upconversion semiconductor interfaces by wafer bonding for photovoltaic applications. Appl. Phys. Lett. 121, 011601 (2022). https://doi.org/10.1063/5.0097427

  4. M. González-Béjar, L. Francés-Soriano, J. Pérez-Prieto, Upconversion microparticles for bioimaging and regenerative medicine. Front. Bioeng. Biotechnol. 4, (2016). https://doi.org/10.3389/fbioe.2016.00047

  5. Z. Zhang, S. Shikha, J. Liu, J. Zhang, Q. Mei, Y. Zhang, Upconversion nanoprobes: recent advances in sensing applications. Anal. Chem. 91(1), 548–568 (2019). https://doi.org/10.1021/acs.analchem.8b04049

    Article  Google Scholar 

  6. K. Wang, Y. Li, H. Li, M. Yin, H. Liu, Q. Deng, S. Wang, Upconversion fluorescent nanoparticles based-sensor array for discrimination of the same variety red grape wines. RSC Adv. 9, 7349–7355 (2019) https://doi.org/10.1039/C8RA09959F

  7. Y. Zhuang, D. Chen, W. Chen, W. Zhang, X. Su, R. Deng, Z. An, H. Chen, R.-J. Xie, X-ray-charged bright persistent luminescence in \(\text{ NaYF}_4: \text{ Ln}^{3+}@\text{ NaYF}_4\) nanoparticles for multidimensional optical information storage. Light Sci. Appl. 10(132), (2021). https://doi.org/10.1038/s41377-021-00575-w

  8. Y. Zhang, Y. Zhang, Y. Zhu, Exploring heterostructured upconversion nanoparticles:from rational engineering to diverse applications. ACS Nano 15(3), 3709–3735 (2021). https://doi.org/10.1021/acsnano.0c09231

    Article  Google Scholar 

  9. S. Zha, H.-F. Chau, W.Y. Chau, L.S. Chan, J. Lin, K.W. Lo, W.C.-S. Cho, Y.L. Yip, S.W. Tsao, P.J. Farrell, L. Feng, J.M. Di, G.-L. Law, H.L. Lung, K.-L. Wong, Dual-targeting peptide-guided approach for precision delivery and cancer monitoring by using a safe upconversion nanoplatform. Adv. Sci. 8(5), 2002919 (2021). https://doi.org/10.1002/advs.202002919, https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/advs.202002919

  10. M. Singh, W.U. Haq, S. Bishnoi, B.P. Singh, S. Arya, A. Khosla, V. Gupta, Investigating photoluminescence properties of Eu3+ doped CaWO4 nanoparticles via Bi3+ amalgamation for w-LEDs application. Mater. Technol. 17(9), 1051–1061 (2022). https://doi.org/10.1080/10667857.2021.1918866

  11. A. Singh, S. Arya, M.E.A Khanuja, Eu doped NaYF4@er:TiO2 nanoparticles for tunable ultraviolet light based anti-counterfeiting applications. Microsyst. Technol. 28(1), 1432–1858 (2022) https://doi.org/10.1007/s00542-019-04734-3

  12. G.K.A. Maheshwary, S.E.A Bishnoi, Novel and wide-ranging color tuning photoluminescent properties of Zn2+/Sm3+ co-doped tetragonal Scheelite-type SrWO4 nanophosphors: energy transfer and realization of white emission for w-LEDs application. Braz. J. Phys. 53(3), 1678–4448 (2023). https://doi.org/10.1007/s13538-022-01219-z

  13. S.P. Hargunani, R.P. Sonekar, A. Singh, A. Khosla, S. Arya, Structural and spectral studies of Ce3+ doped Sr3Y(BO3)3 nano phosphors prepared by combustion synthesis. Mater. Technol. 37(7), 450–461 (2022). https://doi.org/10.1080/10667857.2020.1859052, https://arxiv.org/abs/10.1080/10667857.2020.1859052

  14. J. Han, M. Bender, K. Seehafer, U.H.F. Bunz, Identification of white wines by using two oppositely charged poly(p-phenyleneethynylene)s individually and in complex. Angewandte Chemie International Edition 55(27), 7689–7692 (2016). https://doi.org/10.1002/anie.201602385, https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201602385

  15. J. Han, M. Bender, S. Hahn, K. Seehafer, U.H.F. Bunz, Polyelectrolyte complexes formed from conjugated polymers: array-based sensing of organic acids. Chem. Eur. J. 22(10), 3230–3233 (2016). https://doi.org/10.1002/chem.201504447, https://arxiv.org/abs/https://chemistry-europe.onlinelibrary.wiley.com/doi/pdf/10.1002/chem.201504447

  16. J. Han, B. Wang, M. Bender, K. Seehafer, U.H.F. Bunz, Poly(p-phenyleneethynylene)-based tongues discriminate fruit juices. Analyst 142, 537–543 (2017). https://doi.org/10.1039/C6AN02387H

  17. J. Han, C. Ma, B. Wang, M. Bender, M. Bojanowski, M. Hergert, K. Seehafer, A hypothesis-free sensor array discriminates whiskies for brand, age, and taste. Chem. 2(6), 817–824 (2017). https://doi.org/10.1016/j.chempr.2017.04.008

    Article  Google Scholar 

  18. M.I. Saleh, B. Rühle, S. Wang, et al., Assessing the protective effects of different surface coatings on \(\text{ NaYF}_4:\text{ Yb}^{3+}, \text{ Er}^{3+}\) upconverting nanoparticles in buffer and DMEM. Sci. Rep. 10(19318), (2020). https://doi.org/10.1038/s41598-020-76116-z

  19. X. Linghu, Y. Shu, L. Liu, J. Zhang, Z. Chen, Y. Zhao, Y. Wu, P. Ning, D. Shan, B. Wang, Enhanced photocatalytic degradation of organic pollutants and pathogens in wastewater using a full-spectrum response nanoheterojunction. Environ. Technol. Innov. 28, 102927 (2022). https://doi.org/10.1016/j.eti.2022.102927

  20. G. Ji, Y. Wang, Y. Qin, Y. Peng, S. Li, D. Han, S. Ren, K. Qin, S. Li, Z. Gao, T. Han, Latest developments in the upconversion nanotechnology for the rapid detection of food safety: a review. Nanotechnol. Rev. 11, 2101–2122 (2022) https://doi.org/10.1021/ic9907718

  21. S. Guo, X. Xie, L. Huang, W. Huang, Sensitive water probing through nonlinear photon upconversion of lanthanide-doped nanoparticles. ACS Appl. Mater. Interfaces 8(1), 847–853 (2016). https://doi.org/10.1021/acsami.5b10192

    Article  Google Scholar 

  22. L. Chen, J.W. Ye, H.P. Wang, M. Pan, S.Y. Yin, Z.W. Wei, L.Y. Zhang, K. Wu, Y.N. Fan, C.Y. Su, Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nat. Commun. 8, 15985 (2017) https://doi.org/10.1038/ncomms15985

  23. L. Wang, Y. Li, Controlled synthesis and luminescence of lanthanide doped \(\text{ NaYF}_4\) nanocrystals. Chemistry of Materials 19(4), 727–734 (2007). https://doi.org/10.1021/cm061887m

  24. K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16(7), 1244–1251 (2004). https://doi.org/10.1021/cm031124o

    Article  Google Scholar 

  25. J. Chen, C. Guo, M. Wang, L. Huang, L. Wang, C. Mi, J. Li, X. Fang, M. Chuanbin, S. Xu, Controllable synthesis of \(\text{ NaYF}_4 : \text{ Yb,Er }\) upconversion nanophosphors and their application to in vivo imaging of caenorhabditis elegans. J. Mater. Chem. 21(8), 2632 (2011). https://doi.org/10.1039/c0jm02854a

  26. R. Campos, M. Caldeira, S. Smrke, C. Yeretzian, L.E. Kurozawa, F. Yamashita, The role of ultrasound-assisted emulsification of roasted coffee oil on aroma profile in spray-dried microparticles and its dynamic release by ptr-tof-ms. Eur. Food Res. Technol. 247, 865–878 (2021). https://doi.org/10.1007/s00217-020-03670-1

  27. W. Gao, H. Zheng, H. Qingyan, E. He, R. Wang, Unusual upconversion emission from single \(\text{ NaYF}_4:\text{ Yb}^{3+}/\text{Ho}^{3+}\) microrods under nir excitation. CrystEngComm 16(29), 6697–6706 (2014). https://doi.org/10.1039/C4CE00627E

  28. P. Nimis, R. Vignes Lebbe, Tools for identifying biodiversity: progress and problems (2010)

  29. C. Zhang, C. Wang, F. Liu, Y. He, Mid-infrared spectroscopy for coffee variety identification: comparison of pattern recognition methods. J. Spectrosc. 2016, 1–7 (2016). https://doi.org/10.1155/2016/7927286

  30. C. Zhang, T. Shen, F. Liu, Y. He, Identification of coffee varieties using laser-induced breakdown spectroscopy and chemometrics. Sensors 18(1), 1051–1061 (2018). https://doi.org/10.3390/s18010095

  31. N. Núñez, X. Collado, C. Martinez, J. Saurina, O. Nuñez, Authentication of the origin, variety and roasting degree of coffee samples by non-targeted HPLC-UV fingerprinting and chemometrics. application to the detection and quantitation of adulterated coffee samples. Foods2020 9(3), (2020). https://doi.org/10.3390/foods9030378

  32. C. Zhang, F. Liu, H. Yong, Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis. Scientific Reports 8(1), 2045–2322 (2018). https://doi.org/10.1038/s41598-018-20270-y

    Article  ADS  Google Scholar 

  33. W. Shao, C. Liu, T. Yu, Y. Xiong, Z. Hong, Q. Xie, Constructing positively charged thin-film nanocomposite nanofiltration membranes with enhanced performance. Polymers 12(11), 2526 (2020). https://doi.org/10.3390/polym12112526

  34. F. Shi, X. Zhai, K. Zheng, et al., Synthesis of monodisperse NaYF4:Yb, Tm@SiO2 nanoparticles with intense ultraviolet upconversion luminescence. J. Nanosci. Nanotechnol. 11(11), 9912–5 (2011). https://doi.org/10.1166/jnn.2011.5248

  35. M. Ding, S.E.A. Chen, D. Yin, Simultaneous morphology manipulation and upconversion luminescence enhancement of \(\beta -\text{ NaYF}_4:\text{ Yb}^{3+},\text{ Er}^{3+}\) microcrystals by simply tuning the KF dosage. Sci. Rep. 5(90), 12745 (2015). https://doi.org/10.1038/srep12745

  36. W. Rondan, M. Rivera, D. Acosta, et al., Synthesis and characterization of core@shell \(\beta -\text{ NaYF}_4:\text{ Yb}^{3+},\text{ Ho}^{3+}\)@SiO\(_2\) with different ratios of fluorine to yttrium. Braz. J. Phys. 52(90), (2022). https://doi.org/10.1007/s13538-022-01097-5

Download references

Acknowledgements

The authors thank the Research Unit, Faculty of Sciences, National University of Engineering, Grant UdeI-FC-2022, and the VRI-UNI, Project 22-2023-002526, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Loro.

Ethics declarations

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anchante, A., Puga, R. & Loro, H. \(NaYF_4:Ho^{3+},Yb^{3+}@PEI\) Upconversion Luminescence Microparticles as Multichannel Optical Sensors for the Identification of Coffee Varieties. Braz J Phys 53, 115 (2023). https://doi.org/10.1007/s13538-023-01332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01332-7

Keywords

Navigation