Skip to main content
Log in

High efficiency of magnetite nanoparticles for the arsenic removal from an aqueous solution and natural water taken from Tambo River in Peru

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Water is an essential compound on earth and necessary for life. The presence of highly toxic contaminants such as arsenic and others, in many cases, represents one of the biggest problems facing the earth´s population. Treatment of contaminated water with magnetite (Fe3O4) nanoparticles (NPs) can play a crucial role in arsenic removal. In this report, we demonstrate arsenic removal from an aqueous solution and natural water taken from the Peruvian river (Tambo River in Arequipa, Peru) using magnetite NPs synthesized by the coprecipitation method. XRD data analysis of Fe3O4 NPs revealed the formation of the cubic-spinel phase of magnetite with an average crystallite size of ~ 13 nm, which is found in good agreement with the physical size assessed from TEM image analysis. Magnetic results evidence that our NPs show a superparamagnetic-like behavior with a thermal relaxation of magnetic moments mediated by strong particle-particle interactions. FTIR absorption band shows the interactions between arsenate anions and Fe-O and Fe-OH groups through a complex mechanism. The experimental results showed that arsenic adsorption is fast during the first 10 min; while the equilibrium is reached within 60 min, providing an arsenic removal efficiency of ~ 97%. Adsorption kinetics is well modeled using the pseudo-second-order kinetic equation, suggesting that the adsorption process is related to the chemisorption model. According to Langmuir’s model, the maximum arsenic adsorption capacity of 81.04 mg·g− 1 at pH = 2.5 was estimated, which describes the adsorption process as being monolayer, However, our results suggest that multilayer adsorption can be produced after monolayer saturation in agreement with the Freundlich model. This finding was corroborated by the Sips model, which showed a good correlation to the experimental data. Tests using natural water taken from Tambo River indicate a significant reduction of arsenic concentration from 356 µg L− 1 to 7.38 µg L− 1, the latter is below the limit imposed by World Health Organization (10 µg L− 1), suggesting that magnetite NPs show great potential for the arsenic removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fan Y, Jiang Y, Hu P, Chang R, Yao S, Wang B, et al. Modification of association between prior lung disease and lung cancer by inhaled arsenic: A prospective occupational-based cohort study in Yunnan, China. J Expo Sci Environ Epidemiol. 2016 Sep 13;26(5):464–70; https://doi.org/10.1038/jes.2016.22.

  2. Yoshida T, Yamauchi H, Fan Sun G. Chronic health effects in people exposed to arsenic via the drinking water: Dose-response relationships in review. Toxicol Appl Pharmacol. 2004;198(3):243–52.

    Article  CAS  Google Scholar 

  3. Frost FJ, Muller T, Petersen HV, Thomson B, Tollestrup K. Identifying US populations for the study of health effects related to drinking water arsenic. J Expo Anal Environ Epidemiol. 2003;13(3):231–9.

    Article  CAS  Google Scholar 

  4. Gera R, Singh V, Mitra S, Sharma AK, Singh A, Dasgupta A, et al. Arsenic exposure impels CD4 commitment in thymus and suppress T cell cytokine secretion by increasing regulatory T cells. Sci Rep. 2017;7(1):1–13. https://doi.org/10.1038/s41598-017-07271-z.

    Article  CAS  Google Scholar 

  5. Herschy RW. Water quality for drinking: WHO guidelines. 2012. http://www.who.int. Accessed 2012.

  6. Chowdhury SR, Yanful EK. Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ J. 2011;25(3):429–37.

    Article  Google Scholar 

  7. Yazdani F, Seddigh M. Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Mater Chem Phys. 2016;184:318–23. https://doi.org/10.1016/j.matchemphys.2016.09.058.

    Article  CAS  Google Scholar 

  8. Bazrafshan E, Faridi H, Mostafapour FK, Mahvi AH. Removal of arsenic from aqueous environments using moringa peregrina seed extract as a natural coagulant. Asian J Chem. 2013;25(7):3557–61.

    Article  CAS  Google Scholar 

  9. Son HX, Hao PV, Vinh HV, Hai NT, Ngan NTK, Minh DN, et al. Removal of arsenic from water using crumpled graphite oxide. Green Process Synth. 2018;7(5):404–8. https://doi.org/10.1515/gps-2018-0018.

    Article  CAS  Google Scholar 

  10. Iconaru SL, Guégan R, Popa CL, Heino MM, Ciobanu CS, Predoi D. Magnetite. (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl Clay Sci. 2016;134:128–35.

    Article  CAS  Google Scholar 

  11. Nikić J, Tubić A, Watson M, Maletić S, Šolić M, Majkić T, et al. Arsenic removal from water by green synthesized magnetic nanoparticles. Water (Switzerland). 2019;11(12).

  12. Zeng H, Zhai L, Qiao T, Yu Y, Zhang J, Li D. Efficient removal of As(V) from aqueous media by magnetic nanoparticles prepared with Iron-containing water treatment residuals. Sci Rep. 2020;10,9335:1–12. https://doi.org/10.1038/s41598-020-65840-1.

    Article  CAS  Google Scholar 

  13. Zeng H, Yin C, Qiao T, Yu Y, Zhang J, Li D. As(V) Removal from Water Using a Novel Magnetic Particle Adsorbent Prepared with Iron-Containing Water Treatment Residuals. ACS Sustain Chem Eng. 2018;6(11):14734–42.

    Article  CAS  Google Scholar 

  14. Fadli A, Komalasari, Adnan A, Iwantono, Rahimah, Addabsi AS. Synthesis of Magnetite Nanoparticles via Co-precipitation Method. IOP Conf Ser Mater Sci Eng. 2019;622(1).

  15. Joshi S, Sharma M, Kumari A, Shrestha S, Shrestha B. Arsenic removal fromwater by adsorption onto iron oxide/nano-porous carbon magnetic composite. Appl Sci. 2019;9:18.

    Article  Google Scholar 

  16. Monárrez-Cordero BE, Amézaga-Madrid P, Leyva-Porras CC, Pizá-Ruiz P, Miki-Yoshida M. Study of the adsorption of arsenic (III and V) by magnetite nanoparticles synthetized via AACVD. Mater Res. 2016;19:103–12.

    Article  Google Scholar 

  17. Kango S, Kumar R. Magnetite nanoparticles coated sand for arsenic removal from drinking water. Environ Earth Sci. 2016;75(5):1–12.

    Article  CAS  Google Scholar 

  18. Shahid MK, Phearom S, Choi YG. Synthesis of magnetite from raw mill scale and its application for arsenate adsorption from contaminated water. Chemosphere. 2018;203:90–5. https://doi.org/10.1016/j.chemosphere.2018.03.150.

    Article  CAS  Google Scholar 

  19. Taleb K, Markovski J, Veličković Z, Rusmirović J, Rančić M, Pavlović V, et al. Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size. Arab J Chem. 2019;12(8):4675–93.

    Article  CAS  Google Scholar 

  20. Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, et al. The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater. 2007;8(1–2):71–5.

    Article  CAS  Google Scholar 

  21. Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, et al. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res. 2005;20(12):3255–64.

    Article  CAS  Google Scholar 

  22. Goldberg S, Johnston CT. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci. 2001;234(1):204–16.

    Article  CAS  Google Scholar 

  23. Cornell RM. Schwertmann. U. The iron oxides: Structure, properties, reactions, occurrence and uses. Corros Sci. 1997;39(8):1499–500.

    Article  Google Scholar 

  24. Yang JC, Yin XB. CoFe2 O4 @MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity. Sci Rep. 2017;7(June 2016):1–15; https://doi.org/10.1038/srep40955.

  25. Urian YA, Medrano JJ, Quispe LT, Feliz LL, Coaquira JA. Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles. Appl Clay Sci. 2021;525,167686, https://doi.org/10.1016/j.jmmm.2020.167686.

    Article  Google Scholar 

  26. García FJA, Cano DAI, Cervantes GA, Salazar SJ. Magnetic domain interactions of Fe3O4 nanoparticles embedded in a SiO2 matrix. Sci Rep. 2018;8(1):2–11.

    Google Scholar 

  27. Gotić M, Musić S, Mössbauer. FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions. J Mol Struct. 2007;834–836(SPEC. ISS.):445–53.

  28. Prasad PSR, Shiva Prasad K, Krishna Chaitanya V, Babu EVSSK, Sreedhar B, Ramana Murthy S. In situ FTIR study on the dehydration of natural goethite. J Asian Earth Sci. 2006;27(4):503–11.

    Article  Google Scholar 

  29. Ruan HD, Frost RL, Kloprogge JT. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2001;57(13):2575–86.

    Article  CAS  Google Scholar 

  30. Salem Attia TM, Hu XL, Yin DQ. Synthesised magnetic nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous solution. J Exp Nanosci. 2014;9(6):551–60.

    Article  Google Scholar 

  31. Rajendran K, Balakrishnan GS, Kalirajan J. Synthesis of magnetite nanoparticles for arsenic removal from ground water pond. Int J PharmTech Res. 2015;8(4):670–7.

    CAS  Google Scholar 

  32. Yusoff AHM, Salimi MN, Jamlos MF. Synthesis and characterization of biocompatible Fe3O4 nanoparticles at different pH. Adv Mater Eng Technol V. 2017;1835:1–5.

    Google Scholar 

  33. Oke IA, Olarinoye NO, Adewusi SRA. Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell. Adsorption. 2008;14(1):73–83.

    Article  CAS  Google Scholar 

  34. Chowdhury SR. Application of mixed iron oxides in subsurface remediation. 2013. https://ir.lib.uwo.ca/etd/1301.Accessed 5 Juno 2013.

  35. Yao S, Liu Z, Shi Z. Arsenic removal from aqueous solutions by adsorption onto iron oxide/activated carbon magnetic composite. J Environ Heal Sci Eng. 2014;12(1):6–13.

    Google Scholar 

  36. Mamindy-Pajany Y, Hurel C, Géret F, Galgani F, Battaglia-Brunet F, Marmier N, et al. Arsenic in marine sediments from French Mediterranean ports: Geochemical partitioning, bioavailability and ecotoxicology. Chemosphere. 2013;90(11):2730–6. https://doi.org/10.1016/j.chemosphere.2012.11.056.

    Article  CAS  Google Scholar 

  37. Fato FP, Li DW, Zhao LJ, Qiu K, Long YT. Simultaneous Removal of Multiple Heavy Metal Ions from River Water Using Ultrafine Mesoporous Magnetite Nanoparticles. ACS Omega. 2019;4(4):7543–9.

    Article  CAS  Google Scholar 

  38. Manna BR, Dey S, Debnath S, Ghosh UC. Removal of arsenic from groundwater using crystalline hydrous ferric oxide (CHFO). Water Qual Res J Canada. 2003;38(1):193–210.

    Article  CAS  Google Scholar 

  39. Chiban M, Carja G, Lehutu G, Sinan F. Equilibrium and thermodynamic studies for the removal of As(V) ions from aqueous solution using dried plants as adsorbents. Arab J Chem. 2016;9:988–99. https://doi.org/10.1016/j.arabjc.2011.10.002.

    Article  CAS  Google Scholar 

  40. Gallegos-Garcia M, Ramírez-Muñiz K, Song S. Arsenic removal from water by adsorption using iron oxide minerals as adsorbents: A review. Min Process Extr Met Rev. 2012;33(5):301–15.

    Article  CAS  Google Scholar 

  41. Alguacil, F. J. The removal of toxic metals from liquid effluents by ion exchange resins. Part XV: Iron(II)/H+/Lewatit TP208. Rev. Metal. 57, 4–9 (2021).

  42. Radfard M, Yunesian M, Nabizadeh R, Biglari H, Nazmara S, Hadi M, et al. Drinking water quality and arsenic health risk assessment in Sistan and Baluchestan, Southeastern Province, Iran. Hum Ecol Risk Assess. 2019;25(4):949–65. https://doi.org/10.1080/10807039.2018.1458210.

    Article  CAS  Google Scholar 

  43. Moztahida M, Jang J, Nawaz M, Lim SR, Lee DS. Effect of rGO loading on Fe 3 O 4: A visible light assisted catalyst material for carbamazepine degradation. Sci Total Environ. 2019;667(7):741–50.

    Article  CAS  Google Scholar 

  44. Zhang G, Liu H, Liu R, Qu J. Adsorption behavior and mechanism of arsenate at Fe-Mn binary oxide/water interface. J Hazard Mater. 2009;168(2–3):820–5.

    Article  CAS  Google Scholar 

  45. Ho YS, Mckay G. a C Om Parison of C Hem Isorptio N Kinetic M Odels Applied To Pollutant Rem Oval on Various So Rbents. 1998;76.

  46. Ho YS, Ofomaja AE. Pseudo-second-order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J Hazard Mater. 2006;129(1–3):137–42.

    Article  CAS  Google Scholar 

  47. Sharifi S, Nabizadeh R, Akbarpour B, Azari A, Ghaffari HR, Nazmara S, et al. Modeling and optimizing parameters affecting hexavalent chromium adsorption from aqueous solutions using Ti-XAD7 nanocomposite: RSM-CCD approach, kinetic, and isotherm studies. J Environ Health Sci Engineer. 2019;17:873–88. https://doi.org/10.1007/s40201-019-00405-7.

    Article  CAS  Google Scholar 

  48. Afshin S, Rashtbari Y, Vosough M, Dargahi A, Fazlzadeh M, Behzad A, et al. Application of Box–Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: Kinetics and equilibrium study. J Water Process Eng. 2021;42(April):102113. https://doi.org/10.1016/j.jwpe.2021.102113.

    Article  Google Scholar 

  49. Kua TL, Kooh MRR, Dahri MK, et al. Aquatic plant, Ipomoea aquatica, as a potential low-cost adsorbent for the effective removal of toxic methyl violet 2B dye. Appl Water Sci. 2020;10:243. https://doi.org/10.1007/s13201-020-01326-9.

    Article  CAS  Google Scholar 

  50. Yousefi M, Nabizadeh R, Alimohammadi M, Mohammadi AA, Mahvi AH. Removal of phosphate from aqueous solutions using granular ferric hydroxide process optimization by response surface methodology. 2019; 158: 290–300. doi: https://doi.org/10.5004/dwt.2019.24281.

  51. Rahdar S, Taghavi M, Khaksefidi R, Ahmadi S. Adsorption of arsenic (V) from aqueous solution using modified saxaul ash: isotherm and thermodynamic study. Appl Water Sci. 2019;9(4):1–9. https://doi.org/10.1007/s13201-019-0974-0.

    Article  CAS  Google Scholar 

  52. Sherman DM, Randall SR. Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta. 2003;67(22):4223–30. https://doi.org/10.1016/S0016-7037(03)00237-0.

    Article  CAS  Google Scholar 

  53. Carabante I, Grahn M, Holmgren A, Kumpiene J, Hedlund J. Adsorption of As (V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloid Surf A-Physicochem Eng Asp. 2009;346(1–3):106–13.

    Article  CAS  Google Scholar 

  54. Guillaume, Morin Yuheng, Wang Georges, Ona-Nguema Farid, Juillot Guillaume, Calas Nicolas, Menguy Emmanuel, Aubry John R., Bargar Gordon E., Brown (2009) EXAFS and HRTEM Evidence for As(III)-Containing Surface Precipitates on Nanocrystalline Magnetite: Implications for As Sequestration. Langmuir 25(16) 9119-9128 10.1021/la900655v

Download references

Acknowledgements

The authors thank the financial support of the Universidad Nacional de San Agustin de Arequipa with the thesis project (Contract number: TP-061-2018 UNSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. F. H. Aragón.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ccamerccoa, M.H., Falcon, N.L.T., Félix, L.L. et al. High efficiency of magnetite nanoparticles for the arsenic removal from an aqueous solution and natural water taken from Tambo River in Peru. J Environ Health Sci Engineer 20, 849–860 (2022). https://doi.org/10.1007/s40201-022-00825-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-022-00825-y

Keywords

Navigation