Skip to main content

Advertisement

Log in

Use of fly ash in the production of geopolymers: a literature review

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Currently, the high pollution derived from the production of Portland cement is a major problem, therefore the development of alternative cements obtained by processes with lower gas emissions and low energy consumption is a new line of research of worldwide interest. It is proved that geopolymers can replace Portland cement in some application in the construction industry; however there are lack of critical reviews about finding of it during the last years. The main objective is to perform a critical analysis of the existing literature on material sources, physical and chemical characteristics of fly ash, combination, geopolymer manufacture and its properties; to complete that 91 indexed manuscripts from different data sources were analyzed. This review reveals that the optimal burning of the materials improves their characteristics and generates a higher compressive strength of the geopolymers, and it is also concluded that the most practical way to mix the inputs is by combining at the same time the alkaline solutions and the fly ashes. In the case of mortars and concretes, similar and higher values in compressive strength have been reported, but lower values in flexural strength with respect to conventional Portland cement. While alternative activators such as CCA, it is proven that their inclusion does not affect the strength of the mixture, finally it is found that fly ashes can contain heavy metals, and these are encapsulated and immobilized in the geopolymerization process, complying with environmental standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: [52]

Fig. 2

Source: Own elaboration

Fig. 3

Source: Own elaboration

Fig. 4

Source: [73]

Fig. 5

Source: [49]

Fig. 6

Source: [26]

Fig. 7

Source: [50]

Fig. 8

Source: [85]

Similar content being viewed by others

References

  1. Faiz Uddin AS (2016) Mechanical and durability properties of fly ash geopolymer. Int J Sustain Built Environ 5(2):277–287

    Article  Google Scholar 

  2. Zidi Z, Ltifi M, Zafar I (2021) Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J Build Eng 33:101586

    Article  Google Scholar 

  3. Chowdhury S, Mohapatra S, Gaur A, Dwivedi G, Soni A (2020) Study of various properties of geopolymer concrete—a review. Mater Today Proc 46:5987–5695

    Google Scholar 

  4. Ramakrishnan S, Pasupathy K, Sanjayan J (2021) Synthesis and properties of thermally enhanced aerated geopolymer concrete using form-stable phase change composite. J Build Eng 40:102756

    Article  Google Scholar 

  5. Suwan T (2018) Categories and types of raw materials using in geopolymer cement production: an overview. Solid State Phenom 280:481–486

    Article  Google Scholar 

  6. Domingos LFT, Azevedo AGS, Lombardi CT, Strecker K (2020) Corrosion resistance of fly ash-based geopolymer in hydrochloric and sulfuric acid solutions. Cerâmica 66:394–403

    Article  Google Scholar 

  7. FahimHuseien G, Mirza J, Ismail M, Abdulameer Hussein A, Ghoshal S (2017) Geopolymer mortars as sustainable repair material: a comprehensive review. Renew Sustain Energy Rev 80:57–74

    Google Scholar 

  8. Vargas M, Hermoza Gutierrez M, TupayachyQuispe DP, Almirón J, Huanca ZPK, Velasco López FJ (2020) Manufacture of geopolymeric mortars from ash coming from the ubinas volcano, assessment of this mechanical, physical and microstructural properties. Boliv Quím 37(3):148–159

    Google Scholar 

  9. Nawaz M, Heitor A, Sivakumar M (2020) Geopolymers in construction - recent developments. Constr Build Mater 260:120472

    Article  Google Scholar 

  10. Chen L, Komarneni S, Wang H, Zhuang XY, Zhou CH, Tong DS, Yang HM, Yu WH (2016) Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod 125:253–267

    Article  Google Scholar 

  11. Saxena S, Kumar M, Singh N (2017) Fire resistant properties of alumino silicate geopolymer cement mortars. Mater Today Proc 4(4):5605–5612

    Article  Google Scholar 

  12. Saxena SK, Kumar M, Rai S, Singh NB (2019) Geopolymer cement: synthesis, characterization, properties and applications. Mater Today Proc 15(3):364–370

    Google Scholar 

  13. Kalombe RM, Ojumu VT, Eze CP, Nyale SM, Kevern J, Petrik LF (2020) Fly ash-based geopolymer building materials for green and sustainable development. Materials 13(24):1–17

    Article  Google Scholar 

  14. Ostad-Ali-Askari K, Shayannejad M, Eslamian S, Zamani F, Shojaei N, Navabpour B, Majidifar Z, Sadri A, Ghasemi-Siani Z, Nourozi H, Vafaei O, Homayouni S-M-A (2017) Chapter no. 18: deficit irrigation: optimization models. In: de Management of drought and water scarcity. Handbook of drought and water scarcity, vol 3. Taylor & Francis Group, pp 373–389

  15. Mishra J, Mustakim SM, Patel A, Behera U, Kumar Das S, Kumar Singh S, Kumar Das S (2020) Characterization and utilization of rice husk ash (RHA) in fly ash—blast furnace slag based geopolymer concrete for sustainable future. Mater Today Proc 33(8):5162–5167

    Google Scholar 

  16. Ostad-Ali-Askar K, Su R, Liu L (2018) Water resources and climate change. J Water Clim Change 9(2):239

    Article  Google Scholar 

  17. Li Z, Fei M-E, Huyan C, Shi X (2020) Nano-engineered, fly ash-based geopolymer composites: an overview. Resour Conserv Recycl 168:105334

    Article  Google Scholar 

  18. Mayhoub OA, Mohsen A, Alharbi YR, Abadel AA, Habib A, Kohail M (2021) Effect of curing regimes on chloride binding capacity of geopolymer. Ain Shams Eng J 12(2):3659–3668

    Article  Google Scholar 

  19. Karatas M, Dener M, Mohabbi M, Benli A (2019) A study on the compressive strength and microstructure characteristic of alkali-activated metakaolin cement. Rev Materia. 24(4):e-12507

  20. Selmani S, Sdiri A, Rossignol S, Joussein E (2017) Effects of metakaolin addition on geopolymer prepared from natural. Appl Clay Sc 146:457–467

    Article  Google Scholar 

  21. Hoy M, Horpibulsuk S, Rachan R, Chinkulkijniwat A, Arulrajah A (2016) Recycled asphalt pavement—fly ash geopolymers as a sustainable pavement base material: strength and toxic leaching investigations. Sci Total Environ 573:19–26

    Article  Google Scholar 

  22. Siriwan C (2017) Effect of fly ash on compressive strength of metakaolin based geopolymer. Appl Mech Mater 873:170–175

    Article  Google Scholar 

  23. Mabroum S, Moukannaa S, El Machi A, Taha Y, Benzaazoua M, Hakkou R (2020) Mine wastes based geopolymers: a critical review. Clean Eng Technol 1:100014

    Article  Google Scholar 

  24. Wattimena OK, Antoni A, Hardjito D (2017) A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer. AIP Conf Proc 1887(1):020041

    Article  Google Scholar 

  25. Leite Vasconcelos DC, Vasconcelos WL (2019) Synthetic aluminosilicates for geopolymer production. Mater Res 22(2):e20180508

    Article  Google Scholar 

  26. Cárdenas Pulido J, Aperador Chaparro JW, Aperador Chaparro W, Pinzón Cárdenas MJ, Pinzón Cárdenas MJ, Ospina Guzman MÁ (2019) Cenizas de cascarilla de arroz para la activación alcalina de cementantes binarios (ceniza volante/escoria de alto horno). Matéria

  27. Burduhos Nergis D, Abdullah AB, Vizureanu P, Tahir M (2018) Geopolymers and their uses: review. IOP Conf Ser Mater Sci Eng 374:012019

    Article  Google Scholar 

  28. Khater HM (2019) Development and characterization of sustainable. Cerâmica 65:153

    Article  Google Scholar 

  29. Arruda Pereiraa M, Leite Vasconcelos DC, Vasconcelos (2019) Synthetic aluminosilicates for geopolymer production. Mater Res 22(2

  30. Mohamed G, Djamila B (2018) Physical and mechanical properties of cement mortar made with brick waste. MATEC Web Conf 149:1–5

    Article  Google Scholar 

  31. Guendouz M, Boukhelkhal D, Bourdot A, Babachikh O, Hamadouche A (2020) The effect of ceramic wastes on physical and mechanical properties of eco-friendly flowable sand concrete. In: (ed), Advanced Ceramic Materials. IntechOpen

  32. Kastiukas G, Ruan S, Liang S, Zhou X (2020) Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment. J Clean Prod 255:120290

    Article  Google Scholar 

  33. Fadhil Nurruddin M, Haruna S, Mohammed BS, GalalSha’aban I (2018) Methods of curing geopolymer concrete: a review. Int J Adv Appl Sci 5:31–36

    Article  Google Scholar 

  34. Mehta A, Siddique R (2016) An overview of geopolymers derived from industrial by-products. Constr Build Mater 127:183–198

    Article  Google Scholar 

  35. Garces JIT, Dollente IJ, Beltran AB, Tan RR, Promentilla MAB (2021) Life cycle assessment of self-healing geopolymer concrete. Clean Eng Technol 4:100147

    Article  Google Scholar 

  36. Toniolo N, Boccaccini AR (2017) Fly ash-based geopolymers containing added silicate waste. A review. Ceram Int 43:14545

    Article  Google Scholar 

  37. Haozhe G, Peng Y, Baifa Z, Qiang W, Liangliang D, Dong L (2020) Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin. J Clean Prod 285:125430

    Google Scholar 

  38. Majhi RK, Padhy A, Nayak AN (2021) Performance of structural lightweight concrete produced by utilizing high volume of fly ash cenosphere and sintered fly ash aggregate with silica fume. Clean Eng Technol 3:100121

    Article  Google Scholar 

  39. Amran M, Debbarma S, Ozbakkaloglu T (2021) Fly ash-based eco-friendly geopolymer concrete: a critical review of the long-term durability properties. Constr Build Mater 270:1–23

    Article  Google Scholar 

  40. Alyousef R, Alabduljabbar H, El-Zeadani M, Amran YM (2020) Clean production and properties of geopolymer concrete; a review. J Clean Prod 251:119679

    Article  Google Scholar 

  41. Gökhan K, Gökhan G (2019) Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production. Constr Build Mater 217:498–506

    Article  Google Scholar 

  42. Guendouz M, Boukhelkhal D (2018) Properties of dune sand concrete containing coffee waste. EDP sciences 149:01039

    Google Scholar 

  43. Singh N, Middendorf B (2020) Geopolymers as an alternative to Portland cement: an overview. Constr Build Mater 237:1155

    Article  Google Scholar 

  44. Giergiczny Z (2019) Fly ash and slag. Cem Concrete Res 124:105826

    Article  Google Scholar 

  45. Shehata N, Sayed ET, Abdelkareem MA (2021) Recent progress in environmentally friendly geopolymers: a review. Sci Total Environ 762:143166

    Article  Google Scholar 

  46. KumerSaha A (2018) Effect of class F fly ash on the durability properties of concrete. Sustain Environ Res 28(1):25–31

    Article  Google Scholar 

  47. Shang M, Zhao M, Zhang G, Mann D, Lumsden K, Tao M (2016) Durability of red mud-fly ash based geopolymer and leaching behavior of heavy metals in sulfuric acid solutions and deionized water. Constr Build Mater 124:373–382

    Article  Google Scholar 

  48. Bobirică C, Shim J-H, Park J-Y (2017) Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram Int 44:5886–5893

    Article  Google Scholar 

  49. Nurtanto D, Junaidi I, Wahyuningtyas W, Yunarni W (2020) Comparison addition of rice husk ash and roof tile ash on fly ash-based geopolymer cement with Portland cement. Revista Ingeniería de Construcción 35:287–294

    Article  Google Scholar 

  50. Valencia-Saavedra W, Mejía de Gutiérrez R, Gordillo M (2018) Geopolymeric concretes based on fly ash with high unburned content. Constr Build Mater 165:697–706

    Article  Google Scholar 

  51. Cong P, Cheng Y (2021) Advances in geopolymer materials: a comprehensive review. J Traffic Transp Eng 351:283–314

    Google Scholar 

  52. Hassan A, Arif M, Shariq M (2019) Use of geopolymer concrete for a cleaner and sustainable environment. J Clean Prod 223:704–728

    Article  Google Scholar 

  53. VillaquiránCaicedo MA, Rodríguez ED, Mejía De Gutiérrez R (2015) Microstructure assessment of metakaolin based-geopolymers produced with alternative silica sources exposed to high temperatures. Ingeniería Investigación, Tecnología 16(1):113–122

    Google Scholar 

  54. Carter K, Deaver E, Ziehl P, Assi LN (2020) Review of availability of source materials for geopolymer/sustainable concrete. J Clean Prod 263:121477

    Article  Google Scholar 

  55. Apolonio PH, Lima JS, Marinho EP, Nobrega AC, Freitas JC, Martinelli AE (2020) Produção de geopolímeros utilizando cinza da casca de arroz como fonte complementar de sílica. Cerâmica 66:172–178

    Article  Google Scholar 

  56. Nuaklong P, Janprasit K, Jongvivatsakul P (2021) Enhancement of strengths of high-calcium fly ash geopolymer containing borax with rice husk ash. J Build Eng 40:102762

    Article  Google Scholar 

  57. Torres-Carrasco M, Puertas F (2017) Alkaline activation of different aluminosilicates as an alternative to Portland cement: alkali activated cements or geopolymers. Revista Ingeniería de Construcción

  58. Villaquirán-Caicedo MA, Mejía-de Gutiérrez R (2015) Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. DYNA

  59. Mohajerani A, Suter D, Bailey TJ, Song T, Arulrajah A, Horpibulsuk S, Law D (2019) Recycling waste materials in geopolymer concrete. Clean Technol Environ Policy 21:493–515

    Article  Google Scholar 

  60. Singh K (2020) Experimental study on metakolin and baggashe ash based geopolymer concrete. Mater Today Proc 37:3289–3295

    Article  Google Scholar 

  61. Laxman Yadav A, Sairam V, Muruganandam L, Srinivasan K (2020) Synthesis and characterization of geopolymer from metakaolin and sugarcane bagasse ash. Constr Build Mater 258:119231

    Article  Google Scholar 

  62. Liang G, Zhu H, Zhang Z, Wu Q (2019) Effect of rice husk ash addition on the compressive strength and thermal stability of metakaolin based geopolymer. Constr Build Mater 222:872–881

    Article  Google Scholar 

  63. Ionescu BA, Lӑzӑrescu A (2020) A review regarding the use of natural and industrial by-products in the production of geopolymer binders. Mater Sci Eng 877:012033

    Google Scholar 

  64. Hosan A, Haque S, Shaikh F (2016) Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: a comparative study. J Build Eng 8:123–130

    Article  Google Scholar 

  65. Gallego H, Toro E, Rojas R (2020) State of the art: process of Pozzolan formation from ash and its applications. Constr Eng J 35(2):119–125

    Google Scholar 

  66. Hu L, He Z, Zhang S (2020) Sustainable use of rice husk ash in cement-based materials: environmental evaluation and performance improvement. J Clean Prod 264:121744

    Article  Google Scholar 

  67. VillaquiránCaicedo MA, Gutiérrez RM, Gallego N (2017) A novel MK-based geopolymer composite activated with rice husk ash and KOH: performance at high temperature. Mater Constr 67(326):117

    Article  Google Scholar 

  68. Khankhaje E, WaridHussin M, Mirza J, Rafieizonooz M, Razman Salim M, Chin Siong H, MohdWarida MN (2016) On blended cement and geopolymer concretes containing palm oil fuel ash. Mater Des 89:385–398

    Article  Google Scholar 

  69. Zhanga Z, Zhu H, Zhou C, Wang H (2016) Geopolymer from kaolin in China: an overview. Appl Clay Sci 119:31–41

    Article  Google Scholar 

  70. García-Lodeiro I, Fernández-Jiménez A, Palomo A (2015) Cementos híbridos de bajo impacto ambiental: Reducción del factor clinker. Revista ALCONPAT 5:1–17

    Article  Google Scholar 

  71. Zada Farhan K, Megat Johari MA, Demirboğa R (2020) Assessment of important parameters involved in the synthesis of geopolymer composites: a review. Constr Build Mater 264:120276

    Article  Google Scholar 

  72. Asim N, Alghoul M, Mohammad M, Hassan Amin M, Akhtaruzzaman M, Amin N, Sopian K (2019) Emerging sustainable solutions for depollution: Geopolymers. Constr Build Mater 199:540–548

    Article  Google Scholar 

  73. Teewara S, Mizi F (2016) Effect of manufacturing process on the mechanisms and mechanical properties of fly ash based geopolymer in ambient curing temperature. Mater Manuf Process 32(5):461–467

    Google Scholar 

  74. Naghizadeh A, Ekolu S, Musonda I (2020) High temperature heat-treatment (HTHT) for partial mitigation of alkali attack in hardened fly ash geopolymer binders. Case Stud Constr Mater 12:1–11

    Google Scholar 

  75. Oviedo Sánchez K, Mejía de Gutiérrez R (2019) Mortero geopolimérico para uso potencial como recubrimiento en concreto. Revista EIA 16(31):159–170

    Article  Google Scholar 

  76. de Sazevedo AG, Strecker K, de Araújo Jr AG, da Silva CA (2017) Produção de geopolímeros à base de cinza volante usando soluções ativadoras com diferentes composições de Na2O e Na2SiO3. Cerâmica 63:143–151

    Article  Google Scholar 

  77. Khan MI, Azizli K, Sufian S, Man Z (2015) Sodium silicate-free geopolymers as coating materials: effects of Na/Al and water/solid ratios on adhesion strength. Ceram Int 41(2):2794–2805

    Article  Google Scholar 

  78. Geraldo RH, Ouellet-Plamondon CM, Muianga EAD, Camarini G (2017) Alkali-activated binder containing wastes: a study with rice husk ash and red ceramic. Cerâmica 63:44–51

    Article  Google Scholar 

  79. MagdalenoLópez C, Pérez Bueno J, Mendoza López M, ReyesAraiza J, Manzano-Ramírez A (2019) Fly ash lightweight material of the cellular concrete type using sol-gel and thermal treatment. Constr Build Mater 206:512–518

    Article  Google Scholar 

  80. Singh B, Ishwarya G, Gupta M, Bhattacharyya S (2015) Geopolymer concrete: a review of some recent developments. Constr Build Mater 85:81–82

    Article  Google Scholar 

  81. Shehab HK, Eisa AS, Wahba AM (2016) Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Constr Build Mater 126:560–565

    Article  Google Scholar 

  82. Nindyawati A, Umniati BS, Risdanareni P (2017) Flexural test of fly ash based geopolimer concrete beams. MATEC Web Conf 97:1–8

    Article  Google Scholar 

  83. Noda Livi C, LonguiniRepette W (2015) Ligante geopolimérico produzido com cinza. Ambiente Construído 15:7–18

    Article  Google Scholar 

  84. Luan C, Shi X, Zhang K, Ufashev N, Yang F, Dai J, Wang Q (2020) A mix design method of fly ash geopolymer concrete based on factors analysis. Constr Build Mater 272:54

    Google Scholar 

  85. Billong N, Kinuthia J, Oti J, ChinjeMelo U (2018) Performance of sodium silicate free geopolymers from metakaolin (MK) and Rice Husk Ash (RHA): effect on tensile strength and microstructure. Constr Build Mater 189:307–313

    Article  Google Scholar 

  86. Fu Q, Xu W, Zhao X, Bu M, Yuan Q, Niu D (2021) The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram Int 47(21):29550–29566

    Article  Google Scholar 

  87. Lingyu T, Dongpo H, Jianing Z, Hongguang W (2021) Durability of geopolymers and geopolymer concretes: a review. Rev Adv Mater Sci 60(1):1–14

    Article  Google Scholar 

  88. Chen Y, Zhou X, Wan S, Zheng R, Tong J, Hou H, Wang T (2019) Synthesis and characterization of geopolymer composites based on gasification coal fly ash and steel slag. Gasif Coal Fly Ash Steel Slag 211:646–658

    Google Scholar 

  89. Martínez López C, Mejía Arcila JM, Torres Agredo J, Mejía de Gutiérrez R (2015) Evaluación de las características de toxicidad de dos residuos industriales valorizados mediante procesos de geopolimerización. DYNA

  90. Jin M, Zheng Z, Sun Y, Chen L, Jin Z (2016) Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. J Non-Cryst Solids 450:116–122

    Article  Google Scholar 

  91. Bobirică C, Ho Shim J, Yang Park J (2017) Leaching behavior of fly ash-waste glass and fly ash-slag-waste glass-based geopolymers. Ceram Int 44:1–28

    Google Scholar 

Download references

Acknowledgements

To thank the professional school of Civil Engineering of the Universidad Señor de Sipán for always motivating us to excel in different areas of research and the support provided for the advice of this literature review.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muñoz Pérez Sócrates Pedro.

Ethics declarations

Conflict of interests

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedro, M.P.S., Samuel, C.M., Mercedes, D.G.C. et al. Use of fly ash in the production of geopolymers: a literature review. Innov. Infrastruct. Solut. 7, 236 (2022). https://doi.org/10.1007/s41062-022-00835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-00835-7

Keywords

Navigation