Skip to main content

Advertisement

Log in

Evaluation of GPM Dual-Frequency Precipitation Radar Algorithms to Estimate Drop Size Distribution Parameters, Using Ground-Based Measurement over the Central Andes of Peru

  • Original Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The raindrop size distribution (DSD) parameters, which consists of the mass-weighted average diameter (Dm) and the scaling parameter for the concentration (Nw) are essential to estimate precipitation in numerical modelling and other research areas such as the Global Precipitation Measurement (GPM) core satellite. In the present work, we used the GPM Dual-Frequency Precipitation Radar algorithms (GPM-DPR), single (SF) and dual (DF) frequency, and in situ observations to derive the DSD parameters and evaluate the performance of algorithms under the complex orography and climate regime of the central Andes. We used data from optical disdrometer and Ka-band profiler radar over Huancayo Observatory during the austral summer monsoon. Our results indicate that the GPM-DPR algorithms have problems to correctly estimate the DSD parameters of convective rains due to the high variability in time and space of this type of rain and is the result of fixing the shape parameter (µ). The estimation of DSD parameters in stratiform rains, which are very common in the central Andes, is strongly affected by the limitation of the DF algorithm in light rain rates caused by its inability to estimate Dm < 1 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The data and codes that support the findings of this study are available with the identifier(s) at the private link (https://figshare.com/s/820dd262f9a3b9c72948).

References

  • Adhikari N, Iguchi T (2006) Effect of raindrop size distribution variability in dual-frequency radar rain retrieval algorithms assessed from disdrometer measurements. Geosci Remote Sens Lett IEEE 3:197–201. https://doi.org/10.1109/LGRS.2005.862275

    Article  Google Scholar 

  • Arulraj M, Barros AP (2019) Improving quantitative precipitation estimates in mountainous regions by modelling low-level seeder-feeder interactions constrained by Global Precipitation Measurement Dual-frequency Precipitation Radar measurements. Remote Sens Environ 231:111213. https://doi.org/10.1016/j.rse.2019.111213

    Article  Google Scholar 

  • Atlas D, Srivastava RC, Sekhon RS (1973) Doppler radar characteristics of precipitation at vertical incidence. Rev Geophys Space Phys 11:1–35. https://doi.org/10.1029/RG011i001p00001

    Article  Google Scholar 

  • Baltas E, Panagos D, Mimikou M (2016) Statistical analysis of the raindrop size distribution using disdrometer data. Hydrology 3:9. https://doi.org/10.3390/hydrology3010009

    Article  Google Scholar 

  • Berenguer M, Zawadzki I (2008) A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Weather Forecast 23:1085–1101. https://doi.org/10.1175/2008WAF2222134.1

    Article  Google Scholar 

  • Berenguer M, Zawadzki I (2009) A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Part II: scale dependence. Weather Forecast 24:800–811. https://doi.org/10.1175/2008WAF2222210.1

    Article  Google Scholar 

  • Bringi VN, Chandrasekar V, Hubbert J, Gorgucci E, Randeu WL, Schoenhuber M (2003) Raindrop size distribution in differ-ent climatic regimes from disdrometer and dual polarized radar analysis. J Atmos Sci 60:354–365

    Article  Google Scholar 

  • Chandrasekar V, Hou A, Smith E, Bringi VN, Rutledge SA, Gorgucci E, Petersen WA, Jackson GS (2008) Potential role of dual-polarization radar in the validation of satellite precipitation measurements: rationale and opportunities. Bull Am Meteorol Soc 89:1127–1146

    Article  Google Scholar 

  • Chase R, Nesbitt S, Mcfarquhar G (2020) Evaluation of the microphysical assumptions within GPM-DPR using ground-based observations of rain and snow. Atmosphere 11:619. https://doi.org/10.3390/atmos11060619

    Article  Google Scholar 

  • Chavez SP, Silva Y, Barros AP (2020) High-elevation monsoon precipitation processes in the Central Andes of Peru. J Geophys Res Atmos 125(24):3. https://doi.org/10.1029/2020JD032947

    Article  Google Scholar 

  • Crisologo I, Warren RA, Mühlbauer K, Heistermann M (2018) Enhancing the consistency of spaceborne and ground-based radar comparisons by using beam blockage fraction as a quality filter. Atmos Meas Tech 11:5223–5236

    Article  Google Scholar 

  • D’Adderio LP, Vulpiani G, Porcù F, Tokay A, Meneghini R (2018) Comparison of GPM core observatory and ground-based radar retrieval of mass-weighted mean raindrop diameter at midlatitude. J Hydrometeorol 19(10):1583–1598

    Article  Google Scholar 

  • D'Adderio L, Porcu F, Tokay A (2014) Raindrop Size Distribution under Drop Break-up: Implications for GPM DPR Algorithm. Poster presented at Conference: European Conference on Radar in Meteorology and Hydrology

  • Das S, Maitra A (2016) Vertical profile of rain: Ka band radar observations at tropical locations. J Hydrol 534:31–41. https://doi.org/10.1016/j.jhydrol.2015.12.053

    Article  Google Scholar 

  • Dunkerley D (2008) Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site. Hydrol Process 22:5024–5036. https://doi.org/10.1002/hyp.7122

    Article  Google Scholar 

  • Flores JL, Alvarez A, Kumar S, Martínez D, Villalobos E, Silva Y (2019) Analysis of possible triggering mechanisms of severe thunderstorms in the tropical Central Andes of Peru, Mantaro Valley. Atmosphere 10(6):301. https://doi.org/10.3390/atmos1006030

    Article  Google Scholar 

  • Flores-Rojas J, Alvarez A, Valdivia J, Laura M, Kumar S, Karam H, Villalobos E, Martinez-Castro D, Silva Y (2021) On the dynamic mechanisms of intense rainfall events in the Central Andes of Peru, Mantaro valley. Atmos Res. https://doi.org/10.1016/j.atmosres.2020.105188

    Article  Google Scholar 

  • Foote GB, Du Toit PS (1969) Terminal Velocity of Raindrops Aloft. J Appl Meteor 8(2):249–253. https://doi.org/10.1175/1520-0450(1969)008%3c0249:tvora%3e2.0.co;2

    Article  Google Scholar 

  • Friedrich K, Higgins S, Masters FJ, Lopez CR (2013) Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall. J Atmos Oceanic Technol 30:2063–2080

    Article  Google Scholar 

  • Gabella M, Speirs P, Hamann U, Germann U, Berne A (2017) Measurement of precipitation in the Alps using dual-polarization c-band ground-based radars, the GPM Spaceborne Ku-Band Radar, and Rain Gauges. Remote Sens 9:1147

    Article  Google Scholar 

  • Garreaud R (1999) Multiscale analysis of the summertime precipitation over the Central Andes. Mon Wea Rev 127:901–921

    Article  Google Scholar 

  • Hong Y, Gourley JJ (2015) Radar Hydrology: Principles, Models, and Applications (1st Ed.). CRC Press, Boca Raton, pp 56–57

  • Iguchi T, Seto S, Meneghini R, Yoshida N, Awaka J, Kubota T (2010) GPM/DPR Level-2 Algorithm Theoretical Basis Document. Tech. Rep.; NASA Goddard Space Flight Center: Greenbelt, MD, USA

  • Junquas C, Li L, Vera CS, Le Treut H, Takahashi K (2016) Influence of South America orography on summertime precipitation in Southeastern South America. Clim Dyn 46:3941–3963. https://doi.org/10.1007/s00382-015-2814-8

    Article  Google Scholar 

  • Junquas C, Takahashi K, Condom T, Espinoza JC, Chavez S, Sicart JE, Lebel T (2018) Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes. Clim Dyn 50:3995–4017. https://doi.org/10.1007/s00382-017-3858-8

    Article  Google Scholar 

  • Kubota T, Iguchi T, Kojima M, Liao L, Masaki T, Hanado H, Oki R (2016) A statistical method for reducing sidelobe clutter for the Ku-band precipitation radar on board the GPM core observatory. J Atmos Ocean Tech 33(7):1413–1428. https://doi.org/10.1175/JTECH-D-15-0202.1

    Article  Google Scholar 

  • Kumar LS, Lee YH, Ong J (2010) Truncated gamma drop size distribution models for rain attenuation in Singapore. Antennas and Propagation. IEEE Trans 58:1325–1335. https://doi.org/10.1109/TAP.2010.2042027

    Article  Google Scholar 

  • Kumar S, Castillo-Velarde CD, Flores Rojas JL, Moya-Álvarez A, Martínez Castro D, Srivastava S, Silva Y (2020c) Precipitation structure during various phases the life cycle of precipitating cloud systems using geostationary satellite and space-based precipitation radar over Peru. Gisci Remote Sens 57(8):1057–1082

    Article  Google Scholar 

  • Kumar S, Del Castillo-Velarde C, Valdivia J, Flores Rojas J, Gutierrez S, Alvarez A, Martinez-Castro D, Silva Y (2020b) Rainfall characteristics in the Mantaro Basin over tropical andes from a vertically pointed profile rain radar and in-situ field campaign. Atmosphere 11:248. https://doi.org/10.3390/atmos11030248

    Article  Google Scholar 

  • Kumar S, Moya-Álvarez AS, Del Castillo-Velarde C, Martinez-Castro D, Silva Y (2020a) Effect of South American low level flow and Andes mountain on the tropical and mid latitude precipitating cloud systems: GPM observations. Theoret Appl Climatol. https://doi.org/10.1007/s00704-020-03155-x

    Article  Google Scholar 

  • Kumar S, Silva Y (2020) Distribution of hydrometeors in monsoonal clouds over the South American continent during the austral summer monsoon: GPM observations. Int J Remote Sens 41(10):3677–3707

    Article  Google Scholar 

  • Kumar S, Silva-Vidal Y, Moya-Álvarez AS, Martínez-Castro D (2019a) Effect of the surface wind flow and topography on precipitating cloud systems over the Andes and associated Amazon basin: GPM observations. Atmos Res 225:193–208. https://doi.org/10.1016/j.atmosres.2019.03.027

    Article  Google Scholar 

  • Kumar S, Silva Y, Moya-Álvarez AS, Martínez-Castro D (2019b) Seasonal and regional differences in extreme rainfall events and their contribution to the World’s Precipitation: GPM observations. Adv Meteorol. https://doi.org/10.1155/2019/4631609

    Article  Google Scholar 

  • Le M, Chandrasekar V (2014) An algorithm for drop-size distribution retrieval from GPM dual-frequency precipitation radar. In: IEEE Transactions on Geoscience and Remote Sensing, vol 52. pp 7170–7185. https://doi.org/10.1109/TGRS.2014.2308475

  • Liao L, Meneghini R, Tokay A (2014) Uncertainties of GPM-DPR rain estimates caused by DSD parameterizations. J Appl Meteorol Climatol 53:2524–2537

    Article  Google Scholar 

  • Loffler-Mang M, Joss J (2000) An optical disdrometer for measuring size and velocity of hydrometeors. J Atmos Oceanic Technol 17(2):130–139

    Article  Google Scholar 

  • Ma Y, Ni G, Chandra CV, Tian F, Chen H (2019) Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation. Hydrol Earth Syst Sci 23:4153–4170. https://doi.org/10.5194/hess-23-4153-2019

    Article  Google Scholar 

  • Maahn M, Kollias P (2012) Improved Micro Rain Radar snow measurements using Doppler spectra post- processing. Atmos Meas Tech 5(11):2661–2673. https://doi.org/10.5194/amt-5-2661-2012

    Article  Google Scholar 

  • Martinez-Castro D, Kumar S, Flores Rojas J, Moya-Álvarez A, Valdivia J, Villalobos-Puma E, Del Castillo-Velarde C, Silva Y (2019) The impact of microphysics parameterization in the simulation of two convective rainfall events over the Central Andes of Peru using WRF-ARW. Atmosphere. https://doi.org/10.3390/atmos10080442

    Article  Google Scholar 

  • Marzuki M, Hashiguchi H, Yamamoto MK, Mori S, Yamanaka MD (2013) Regional variability of raindrop size distribution over Indonesia. Ann Geophys 31:1941–1948. https://doi.org/10.5194/angeo-31-1941-2013

    Article  Google Scholar 

  • Meneghini R, Kumagai H, Wang JR, Iguchi T, Kozu T (1997) Microphysical retrievals over stratiform rain using measurements from an airborne dual wavelength radar-radiometer. IEEE Trans Geosci Remote Sens 35:487–505

    Article  Google Scholar 

  • Meneghini R, Laio L, Tanelli S, Durden SL (2012) Assessment of the performance of a dual-frequency surface reference technique over ocean. IEEE Trans Geosci Remote Sens 35:2968–2977

    Article  Google Scholar 

  • Mishchenko MI, Travis LD (1998) Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotation symmetric scatterers. J Quant Spectrosc Radiat Transfer 60:309–324

    Article  Google Scholar 

  • Peters G, Fischer B, Münster H, Clemens M, Wagner A (2005) Profiles of raindrop size distributions as retrieved by microrain radars. J Appl Meteorol 44(12):1930–1949. https://doi.org/10.1175/JAM2316.1

    Article  Google Scholar 

  • Radhakrishna B, Satheesh SK, Narayana Rao T, Saikranthi K, Sunilkumar K (2016) Assessment of DSDs of GPM-DPR with ground-based disdrometer at seasonal scale over Gadanki, India. J Geophys Res Atmos 121:11792–11802. https://doi.org/10.1002/2015JD024628

    Article  Google Scholar 

  • Radhakrishna B, Saikranthi K, Rao T (2020) Regional differences in raindrop size distribution within Indian subcontinent and adjoining seas as inferred from global precipitation measurement dual-frequency precipitation radar. J Meteorol Soc Jpn Ser II. https://doi.org/10.2151/jmsj.2020-030

    Article  Google Scholar 

  • Seto S, Iguchi T (2011) Applicability of the iterative backward retrieval method for the GPM dual-frequency precipitation radar. Geosci Remote Sens IEEE Trans 49:1827–1838. https://doi.org/10.1109/TGRS.2010.2102766

    Article  Google Scholar 

  • Seto S, Iguchi T, Oki T (2013) The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements. IEEE Trans Geosci Remote Sens 51:5239–5251

    Article  Google Scholar 

  • Seto S, Shimozumal T, Iguchi T, Oki T (2016) Spatial and temporal variations of mass-weighted mean diameter estimated by GPM-DPR. IEEE Proc IGARSS 2016:3938–3940

    Google Scholar 

  • Silva Y, Takahashi K, Cruz N, Trasmonte G, Mosquera K, Nickl E, Chavez R, Segura B, Lagos P (2006) Variability and climate change in the Mantaro river basin, Central Peruvian Andes. In: presented at International Conference on Southern Hemisphere Meteorology and Oceanography (ICSHMO) 8: 407–419

  • Silva Y, Takahashi K, Chávez R (2008) Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes). Adv Geosci 14:261–264. https://doi.org/10.5194/adgeo-14-261-2008

    Article  Google Scholar 

  • Smith PL (2003) Raindrop Size Distributions: Exponential or Gamma—Does the Difference Matter? J Appl Meteorol 42(7):1031–1034. https://journals.ametsoc.org/view/journals/apme/42/7/1520-0450_2003_042_1031_rsdeog_2.0.co_2.xml

  • Speirs P, Gabella M, Berne AA (2017) Comparison between the GPM dual-frequency precipitation radar and ground-based radar precipitation rate estimates in the Swiss Alps and Plateau. J Hydrometeorol 18:1247–1269

    Article  Google Scholar 

  • Suh S-H, You C-H, Lee D-I (2016) Climatological characteristics of raindrop size distributions in Busan, Republic of Korea. Hydrol Earth Syst Sci 20:193–207. https://doi.org/10.5194/hess-20-193-2016

    Article  Google Scholar 

  • Testud J, Oury S, Black RA, Amayenc P, Dou X (2001) The concept of “normalized” distribution to describe raindrop spectra: a tool for cloud physics and cloud remote sensing. J Appl Meteorol 40(6):1118–1140. https://journals.ametsoc.org/view/journals/apme/40/6/1520-0450_2001_040_1118_tcondt_2.0.co_2.xml

  • Thurai M, Petersen W, Tokay A, Schultz C, Gatlin P (2011) Drop size distribution comparisons between Parsivel and 2-D video disdrometers. Adv Geosci 30:3–9. https://doi.org/10.5194/adgeo-30-3-2011

    Article  Google Scholar 

  • Tokay A, Wolff DB, Petersen WA (2014) Evaluation of the new version of laser-optical disdrometer, OTT Parsivel 2. J Atmos Ocean Technol 31:1276–1288. https://doi.org/10.1175/JTECH-D-13-00174.1

    Article  Google Scholar 

  • Tokay A, D’Adderio LP, Porcù F, Wolff DB, Petersen WA (2017) A field study of footprint-scale variability of raindrop size distribution. J Hydrometeorol 18(12):3165–3179. https://doi.org/10.1175/JHM-D17-0003.1

    Article  Google Scholar 

  • Ulbrich CW (1983) Natural variations in the analytical form of the raindrop size distribution. J Appl Meteor Clim 22(10):1764–1775. https://journals.ametsoc.org/view/journals/apme/22/10/1520-0450_1983_022_1764_nvitaf_2_0_co_2.xml

  • Ulbrich CW, Atlas D (1998) Rainfall microphysics and radar properties: analysis methods for drop size spectra. J Appl Meteorol 37(9):912–923. https://journals.ametsoc.org/view/journals/apme/37/9/1520-0450_1998_037_0912_rmarpa_2.0.co_2.xml

  • Valdivia JM, Scipión DE, Milla M, Silva Y (2020) Multi-Instrument rainfall-rate estimation in the Peruvian Central Andes. J Atmos Oceanic Technol 37:1811–1826. https://doi.org/10.1175/JTECH-D-19-0105.1

    Article  Google Scholar 

  • Villalobos EE, Martinez-Castro D, Kumar S, Silva Y, Fashe O (2019) Estudio de tormentas convectivas sobre los Andes Centrales del Perú usando los radares PR-TRMM y KuPR-GPM. Revista Cubana De Meteorología 25(1):59–75

    Google Scholar 

  • Villalobos E, Martinez-Castro D, Flores Rojas J, Saavedra H, M. & Silva, Y. (2020) Diurnal Cycle of Raindrops Size Distribution in a Valley of the Peruvian Central Andes. Atmosphere 11(1):38. https://doi.org/10.3390/atmos11010038

    Article  Google Scholar 

  • Warren RA, Protat A, Siems ST, Ramsay HA, Louf V, Manton MJ, Kane TA (2018) Calibrating ground- based radars against TRMM and GPM. J Atmos Ocean Technol 35:323–346

    Article  Google Scholar 

  • Wen L, Zhao K, Zhang G, Xue M, Zhou B, Liu S, Chen X (2016) Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J Geophys Res Atmos 121(5):2265–2282. https://doi.org/10.1002/2015JD024160

    Article  Google Scholar 

  • Williams CR, Bringi VN, Carey LD, Chandrasekar V, Gatlin PN, Haddad ZS, Meneghini R, Joseph Munchak S, Nesbitt SW, Petersen WA, Tanelli S, Tokay A, Wilson A, Wolff DB (2014) Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J Appl Meteorol Climatol 53(5):1282–1296

    Article  Google Scholar 

  • Wilson AM, Barros AP (2014) An investigation of warm rainfall microphysics in the southern Appalachians: orographic enhancement via low-level seeder-feeder interactions. J Atmos Sci 71(5):1783–1805. https://doi.org/10.1175/JAS-D-13-0228.1

    Article  Google Scholar 

  • Zagrodnik JP, McMurdie LA, Houze RA (2018) Stratiform precipitation processes in cyclones passing over a coastal mountain range. J Atmos Sci 75(3):983–1004. https://doi.org/10.1175/jas-d-17-0168.1

    Article  Google Scholar 

Download references

Acknowledgements

The present study comes under the project “MAGNET-IGP: Strengthening the research line in physics and microphysics of the atmosphere (Agreement No 010-2017-FONDECYT)”. Yamina Silva-Vidal, Jose Luis Flores-Rojas and Jairo Valdivia-Prado would like to acknowledge the Peruvian PPR068 programme "Reducción de vulnerabilidad y atención de emergencias por desastres" for financial support of their work. This work was done using computational resources, HPC-Linux -Cluster, from Laboratorio de Dinámica de Fluidos Geofísicos Computacionales at Instituto Geofísico del Perú (Grants 101-2014-FONDECYT, SPIRALES2012, IRD-IGP, Manglares IGP-IDRC, PP068 program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Del Castillo-Velarde.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Castillo-Velarde, C., Kumar, S., Valdivia-Prado, J.M. et al. Evaluation of GPM Dual-Frequency Precipitation Radar Algorithms to Estimate Drop Size Distribution Parameters, Using Ground-Based Measurement over the Central Andes of Peru. Earth Syst Environ 5, 597–619 (2021). https://doi.org/10.1007/s41748-021-00242-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-021-00242-5

Keywords

Navigation