Skip to main content
Log in

Use of PTC3 as a pathogen-growth inhibitor: comparative study with silver nanoparticles in in vitro propagation of Tropaeolum tuberosum Ruiz & Pavón “Mashua”

  • Short Communications
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

In vitro culture of any plant tissue requires stringent aseptic conditions to thrive within a microorganism-free environment. This is particularly difficult since culture media inherently contain an optimal and sufficient nutrient concentration for numerous microorganisms, thereby impeding the correct development of the explants. In this study, we assessed the antimicrobial and antifungal efficacy of silver nanoparticles (AgNPs) and the chemical inhibitor of contamination, 1-phenyl-1- (N-phenyl-N’-ethyl-guanil)-3-ethyl-thiocarbamide (Plant Tissue Culture Contamination Control, PTC3) during the propagation of “mashua” MAC003 morphotype (Tropaeolum tuberosum Ruiz & Pavón). We successfully demonstrated the use of these compounds in the medium obviating the need for an autoclaving procedure. To achieve this, we employed a gradient of concentrations of both agents. Murashige and Skoog (MS) culture medium with 3% sucrose and 0.7% agar at pH 5.6 was supplemented with AgNPs nanoparticles at 20, 50, and 100 ppm, alongside PTC3 at 0.2, 2 and 3 ppm concentrations. Both AgNPs and PTC3 exhibited inhibitory effects on microbial and fungal growth across all tested concentrations. Statistical analysis of the biometric parameters measured in explants over 4 week period indicated that the optimal AgNPs concentration was 20 ppm. Additionally, the growth and development outcome of Tropaeolum tuberosum explants were most favorable with PTC3 concentration of 0.2 ppm, as discerned through a comparative analysis of the two compounds. This study proposes the use of PTC3 as a novel compound of choice for avoiding the autoclaving process within in vitro plant tissue culture techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30:709–714. https://doi.org/10.1007/s11738-008-0169-z

    Article  CAS  Google Scholar 

  • Aghdaei M, Salehi H, Sarmast MK (2012) Effects of silver nanoparticles on Tecomella undulata (Roxb·) Seem, micropropagation. Adv Hortic Sci 26(1):21–24

    Google Scholar 

  • Aguilar-Galvez A, Pedreschi R, Carpentier S, Chirinos R, García-Ríos D, Campos D (2020) Proteomic analysis of mashua (Tropaeolum tuberosum) tubers subjected to postharvest treatments. Food Chem 305:125485. https://doi.org/10.1016/j.foodchem.2019.125485

    Article  CAS  PubMed  Google Scholar 

  • Apaza Ticona LN, Tena Pérez V, Bermejo Benito P (2020) Local/traditional uses, secondary metabolites and biological activities of (Tropaeolum tuberosum Ruíz & Pavón). J Ethnopharmacol 247:112152. https://doi.org/10.1016/j.jep.2019.112152

    Article  CAS  PubMed  Google Scholar 

  • Arab MM, Yadollahi A, Hosseini-Mazinani M, Bagheri S (2014) Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G×N15 (hybrid of almond×peach) rootstock. J Genet Eng Biotechnol 12(2):103–110. https://doi.org/10.1016/j.jgeb.2014.10.002

    Article  Google Scholar 

  • BagherzadehHoma M, Ehsanpour AA (2015) Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Indian J Plant Physiol 20(4):353–359. https://doi.org/10.1007/s40502-015-0188-x

    Article  CAS  Google Scholar 

  • Campos D, Noratto G, Chirinos R, Arbizu C, Roca W, Cisneros-Zevallos L (2006) Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). J Sci Food Agric 86(10):1481–1488. https://doi.org/10.1002/jsfa.2529

    Article  CAS  Google Scholar 

  • Caple AD, Cheah KT (2016) Micropropagation of hermaphrodite Carica papaya L.‘Rainbow’seedlings via axillary bud pathway. Biotechnology 12:1–5

    Google Scholar 

  • Chávez-García JA, Andrade-Rodríguez M, Bello-Bello JJ, Rueda-Barrientos MC, Guillén-Sánchez D, Sainz-Aispuro MJ (2020) Nanopartículas de plata en el establecimiento in vitro de ápices de gladiolo. Revista Fitotecnia Mexicana, 43(4-A), 557–557.https://doi.org/10.35196/rfm.2020.4-A.557

  • Chouke PB, Shrirame T, Potbhare AK, Mondal A, Chaudhary AR, Mondal S, Thakare SR, Nepovimova E, Valis M, Kuca K, Sharma R, Chaudhary RG (2022) Bioinspired metal/metal oxide nanoparticles: a road map to potential applications. Mater Today Adv 16:100314. https://doi.org/10.1016/j.mtadv.2022.100314

    Article  CAS  Google Scholar 

  • Cornejo MV (n.d.) (2018) Compendio anual de ‘PRODUCCIÓN AGRÍCOLA’. (n.d.). Anuario Estadístico de la producción anual. Ministerio de Agricultura y Riego, Perú. Retrieved 1 June 2023, from https://www.gob.pe/institucion/midagri/informes-publicaciones/2730325-compendio-anual-de-produccion-agricola

  • Compendio anual de ‘PRODUCCIÓN AGRÍCOLA’. (n.d.). 2019 and 2021. Ministerio de Agricultura y Riego, Perú. Retrieved 1 June 2023, fromhttps://www.gob.pe/institucion/midagri/informes-publicaciones/2730325-compendio-anual-de-produccion-agricola

  • Du D, Sarin S, Đồng Đ, Chidburee A (2019) Effects of micro nano-bubble for surface sterilization on the survival rate of Rhynchostylis hybrid orchid shoot tips.The 10th RMUTs International Conference “Creative Innovation and Technology for Sustainable Agriculture”, Chiang Mai, Thailand

  • Ewais E, Desouky S, Elshazly EH (2015) Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles. Nanosci Nanotechnol 5:45–56. https://doi.org/10.5923/j.nn.20150503.01

    Article  CAS  Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol 180(6):1076–1092. https://doi.org/10.1007/s12010-016-2153-1

    Article  CAS  PubMed  Google Scholar 

  • Gouran A, Jirani M, Mozafari A, Kousheshsaba M, Ghaderi N, Zaheri S (2014) Effect of Silver Nanoparticles On Grapevine Leaf Explants Sterilization at In vitro Conditions. Conference: National Conference of Nanotechnology from Theory and/or Application at: Isfahan Volume: 2nd

  • Haider HI, Zafar I, Ain QU et al (2023) Synthesis and characterization of copper oxide nanoparticles: its influence on corn (Z. mays) and wheat (Triticum aestivum) plants by inoculation of Bacillus subtilis. Environ Sci Pollut Res 30:37370–37385. https://doi.org/10.1007/s11356-022-24877-7

    Article  CAS  Google Scholar 

  • Hassan SA, Mahfouze HA, Mahfouze SA, Allatif AMA (2019) Genotoxicity assessment of nano-particles on micropropagated olive (Olea Europaea L.) plants using RAPD and DAMD markers. Plant Archiv 19(2):1985–1994

    Google Scholar 

  • Jamshidi M, Ghanati F, Rezaei A, Bemani E (2016) Change of antioxidant enzyme activity of hazel (Corylus avellana L.) cells by AgNPs. Cytotechnology 68(3):525–530. https://doi.org/10.1007/s10616-014-9808-y

    Article  CAS  PubMed  Google Scholar 

  • Kalsaitkar P, Tanna J, Kumbhare A, Akre S, Warade C, Gandhare N (2014) Silver nanoparticles induced effect on in-vitro callus production in Bacopa monnieri. Asian J Biol Life Sci 3(3):167–172

    CAS  Google Scholar 

  • Kumar S, Yadav AK, Prabha C (2019) Microbial contamination in tissue culture of Chlorophytum borivilianum, a rare medicinal herb: identification and prevention. J Plant Pathol 101(4):991–995. https://doi.org/10.1007/s42161-019-00327-1

    Article  Google Scholar 

  • Lim TK (2016) Tropaeolum tuberosum. In: Lim TK (ed) Edible medicinal and non-medicinal plants. Modified stems, roots, bulbs, vol 12. Springer International Publishing, pp 94–102. https://doi.org/10.1007/978-3-319-26065-5_3

    Chapter  Google Scholar 

  • Lindo Ricce JC (2021) Determinación de los productos de fermentación de glucosinolatos de mashua (Tropaeolum tuberosum) usando bacterias lácticas. Doctoral Thesis, Repository

  • Mahna N (2013) Plant In vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. J Nanomed Nanotechnol. https://doi.org/10.4172/2157-7439.1000161

    Article  Google Scholar 

  • Mahendran D, KaviKishor PB, Geetha N et al (2018) Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosasuperba L. J Appl Phycol 30:1425–1436. https://doi.org/10.1007/s10811-017-1293-1

    Article  CAS  Google Scholar 

  • Mahendran D, Geetha N, Venkatachalam P (2019) Role of silver nitrate and silver nanoparticles on tissue culture medium and enhanced the plant growth and development. In: Kumar M, Muthusamy A, Kumar V, Bhalla-Sarin N (eds) InvitroPlant breeding towards novel agronomic traits. Springer, Singapore. https://doi.org/10.1007/978-981-32-9824-8_4

    Chapter  Google Scholar 

  • Pastelín-Solano MC, Ramírez-Mosqueda MA, Bogdanchikova N, Castro-González CG, Bello-Bello JJ (2020) Las nanopartículas de plata afectan la micropropagación de Vanilla (VanillaplanifoliaJacks. Ex Andrews). Agrociencia, 54(1):1–13

  • Peña-Rojas G, Sánchez-Sotomayor H, Barahona IR, Andía-Ayme V, Segura-TurkowskyM E-J (2020) Uso de insumos alternativos para la micropropagación en medio semisólido y sistema de inmersión temporal de Solanum Tuberosum, Ullucus tuberosus Oxalis tuberosa. Tropical Subtropical Agroecosyst 23(2):1–15

    Article  Google Scholar 

  • PissardA AC, Ghislai M, Bertin P (2008) Influence of Geographical Provenance on the Genetic Structure and Diversity of the Vegetatively Propagated Andean Tuber Crop, Mashua (Tropaeolum tuberosum), Highlighted by Intersimple Sequence Repeat Markers and Multivariate Analysis Methods. Int J Plant Sci 169(9):1248–1260. https://doi.org/10.1086/591979

    Article  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25(9):1947–1956. https://doi.org/10.1016/S1001-0742(12)60301-5

    Article  CAS  Google Scholar 

  • Safavi K (2012) Evaluation of using nanomaterial in tissue culture media and biological activity. 2nd International Conference on Ecological, Environmental and Biological Sciences (EEBS’2012) Oct. 13–14, 2012 Bali (Indonesia)

  • Sarmast MK, Salehi H, Khosh-Khui M (2012) Micropropagation of Araucaria excelsa R. Br. Var. glauca Carrière from orthotropic stem explants. Physiol Mol Biol Plants 18(3):265–271. https://doi.org/10.1007/s12298-012-0115-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarmast MK, Niazi A, Salehi H, Abolimoghadam A (2015) Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell, Tissue and Organ Culture (PCTOC) 121(1):227–236. https://doi.org/10.1007/s11240-014-0697-8

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233. https://doi.org/10.1007/s12010-012-9759-8

    Article  CAS  PubMed  Google Scholar 

  • Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks Ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Culture 129(2):195–207. https://doi.org/10.1007/s11240-017-1169-8

    Article  CAS  Google Scholar 

  • Sridevi V, Giridhar P (2014) In vitro shoot growth, direct organogenesis and somatic embryogenesis promoted by silver nitrate in Coffea dewevrei. J Plant Biochem Biotechnol 23(1):112–118. https://doi.org/10.1007/s13562-012-0186-2

    Article  CAS  Google Scholar 

  • Timoteo C de O, Paiva R, dos Reis MV, Claro PIC, da Silva DPC, Marconcini JM, de Oliveira JE (2019) Silver nanoparticles in the micropropagation of Campomanesia Rufa (O. Berg) Nied. Plant Cell Tissue Organ Culture (PCTOC), 137(2):359–368. https://doi.org/10.1007/s11240-019-01576-9

  • Torres O, Perea-Dallos M, Fandiño TJ (1992) Micropropagation of Cubio (Tropaeolum tuberosum R & P). In: Bajaj YPS (eds) High-Tech and Micropropagation III Biotechnology in Agriculture and Forestry, vol 19. Springer, Berlin, Heidelberg

  • Tung H, Huynh Gia B, Ngo Q, Hoai Chau N, Duong Tan N (2022) The use of silver nanoparticles as a disinfectant and media additive in plant micropropagation, pp 287–302. https://doi.org/10.1007/978-981-16-6498-4_14

    Chapter  Google Scholar 

  • Tymoszuk A, Miler N (2019) Silver and gold nanoparticles impact on in vitro adventitious organogenesis in chrysanthemum, gerbera and Cape Primrose. Sci Hortic 257:108766. https://doi.org/10.1016/j.scienta.2019.108766

    Article  CAS  Google Scholar 

  • Venkatachalam P, Malar S, Thiyagarajan M, Indira Arulselvi P, Geetha N (2017) Effect of phycochemical coated silver nanocomplexes as novel growth-stimulating compounds for plant regeneration of Alternanthera sessilis L. J Appl Phycol 29(2):1095–1106. https://doi.org/10.1007/s10811-016-0977-2

    Article  CAS  Google Scholar 

  • Yan A, Chen Z (2019) Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int J Mol Sci 20(5):1003. https://doi.org/10.3390/ijms20051003. (PMCID: PMC6429054)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank CONCYTEC and the Ministry of Education-Peru: Project 199-2015-FONDECYT–UNSCH for funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gilmar Peña-Rojas or Ana María Fernández-Ocaña.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña-Rojas, G., Fernández-Núñez, K.J., Andía-Ayme, V. et al. Use of PTC3 as a pathogen-growth inhibitor: comparative study with silver nanoparticles in in vitro propagation of Tropaeolum tuberosum Ruiz & Pavón “Mashua”. Vegetos (2023). https://doi.org/10.1007/s42535-023-00737-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42535-023-00737-8

Keywords

Navigation