Skip to main content
Log in

Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Endothelial cells (ECs) may behave as hemodynamic sensors, translating mechanical information from the blood flow into biochemical signals, which may then be transmitted to underlying smooth muscle cells. The extracellular matrix (ECM), which provides adherence and integrity for the endothelium, may serve an important signaling function in vascular diseases such as atherogenesis, which has been shown to be promoted by low and oscillating shear stresses. In this study, confluent bovine aortic ECs (BAECs) were exposed to an oscillatory shear stress or to a hydrostatic pressure of 40 mmHg for time periods of 12 to 48 h. Parallel control cultures were maintained in static condition. Although ECs exposed to hydrostatic pressure or to oscillatory flow had a polygonal morphology similar to that of control cultures, these cells possessed more numerous central stress fibers and exhibited a partial loss of peripheral bands of actin, in comparison to static cells. In EC cultures exposed to oscillatory flow or hydrostatic pressure, extracellular fibronectin (Fn) fibrils were more numerous than in static cultures. Concomitantly, a dramatic clustering ofα 5β1 Fn receptors and of the focal contact-associated proteins vinculin and talin occurred. Laminin (Ln) and collagen type IV formed a network of thin fibrils in static cultures, which condensed into thicker fibers when BAECs were exposed to oscillatory shear stress or hydrostatic pressure. The ECM-associated levels of Fn and Ln were found to be from 1.5-to 5-fold greater in cultures exposed to oscillatory shear stress or pressure for 12 and 48 h, than in static cultures. The changes in the organization and composition of ECM and focal contacts reported here suggest that ECs exposed to oscillatory shear stress or hydrostatic pressure may have different functional characteristics from cells in static culture, even though ECs in either environment exhibit a similar morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Birdwell, C. R.; Gospodarowicz, D.; Nicolson, G. L. Identification, localization and role of fibronectin in cultured bovine endothelial cells. Proc. Natl. Acad. Sci. USA 75:3273–3277; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Burridge, K.; Fath, K. R.; Kelly, T., et al. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann. Rev. Cell Biol. 4:487–525; 1988.

    PubMed  CAS  Google Scholar 

  • Chen, J.-M.; Chen, W.-T. Fibronectin-degrading proteases from the membranes of transformed cells. Cell 48:193–203; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Contard, F.; Koteliansky, V.; Marotte, F., et al. Specific alterations in the distribution of extracellular matrix components within the rat myocardium during the development of pressure overload. Lab. Invest. 64:65–75; 1991.

    PubMed  CAS  Google Scholar 

  • Davies, P. F.; Remuzzi, A.; Gordon, E. J., et al. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. USA 83:2114–2117; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, C. J., Jr.; Bussolari, S. R.; Gimbrone, M. A., et al. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185; 1981.

    PubMed  Google Scholar 

  • Diamond, S. L.; Eskin, S. G.; McIntire, L. V. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243:1483–1485; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Eskin, S. G.; Ives, C. L.; McIntire, L. V., et al. Response of cultured endothelial cells to steady flow. Microvasc. Res. 28:87–94; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Franke, R.-P.; Grafe, M.; Schnittler, H., et al. Induction of human vascular endothelial stress fibers by fluid shear stress. Nature 307:648–649; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz, D.; Greenburg, G.; Foidart, J. M., et al. The production and localization of laminin in cultured vascular and corneal endothelial cells. J. Cell. Physiol. 107:171–183; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Gupte, A.; Frangos, J. A. Effects of flow on the synthesis and release of fibronectin by endothelial cells. In Vitro Cell. Dev. Biol. 26:57–60; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Haskin, C.; Cameron, I. Physiological levels of hydrostatic pressure alter morphology and organization of cytoskeletal and adhesion proteins in MG-63 osteosarcoma cells. Biochem. Cell Biol. 71:27–35; 1993.

    PubMed  CAS  Google Scholar 

  • Hedin, U.; Bottger, B. A.; Forsberg, E., et al. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J. Cell Biol. 107:307–319; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Hedman, K.; Vaheri, A. Fibronectin and the pericellular matrix. In: Mosher D. F., ed. Extracellular matrix, a series, fibronectin. San Diego: Academic Press, Inc.; 1989:123–137.

    Google Scholar 

  • Helmlinger, G.; Geiger, R. V.; Schreck, S., et al. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J. Biomech. Eng. 113:123–131; 1991.

    PubMed  CAS  Google Scholar 

  • Herbst, T. J.; McCarthy, J. B.; Tsilibary, E. C., et al. Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J. Cell Biol. 106:1365–1373; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Herman, I. M.; Brant, A. M.; Warty, V. S., et al. Hemodynamics and the vascular endothelial cytoskeleton. J. Cell Biol. 105:291–302; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48:549–554; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D. E.; Folkman, J. Mechanical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D. E. Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc. Natl. Acad. Sci. USA 87:3579–3583; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104:613–627; 1993.

    PubMed  Google Scholar 

  • Kim, D. W.; Gotlieb, A. I.; Langille, B. L. In vivo modulation of endothelial F-actin microfilaments by experimental alterations in shear stress. Arteriosclerosis 9:439–445; 1989.

    PubMed  CAS  Google Scholar 

  • Kramer, R. H.; Fuh, G. M.; Karasek, M. A. Type IV collagen synthesis by cultured human microvascular endothelial cells and its deposition into the subendothelial basement membrane. Biochemistry 24:7423–7430; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Ku, D. N.; Giddens, D. P.; Zarins, C. K., et al. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low and oscillating shear stress. Arteriosclerosis 5:293–302; 1985.

    PubMed  CAS  Google Scholar 

  • Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, M. J.; Nerem, R. M. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 176:341–347; 1985.

    Article  Google Scholar 

  • Levesque, M. J.; Liepsch, D.; Moravec, S., et al. Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 6:220–229; 1986.

    PubMed  CAS  Google Scholar 

  • Levesque, M. J.; Sprague, E. A.; Nerem, R. M. Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11:702–707; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Macarak, E. J.; Howard, P. S. Adhesion of endothelial cells to extracellular matrix proteins. J. Cell. Physiol. 116:76–86; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A.; Williams, S. T.; Wyatt, T., et al. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:507–520; 1983.

    Article  Google Scholar 

  • Madri, J. A.; Pratt, B. M.; Tucker, A. M. Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106:1375–1384; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Nerem, R. M.; Cornhill, J. F. The role of fluid mechanics in atherosclerosis. J. Biomech. Eng. 102:181–189; 1980.

    PubMed  CAS  Google Scholar 

  • Nerem, R. M.; Levesque, M. J.; Cornhill, J. F. Vascular endothelial morphology as an indicator of blood flow. J. Biomech. Eng. 103:172–176; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Norris, W. D.; Steele, J. G.; Johnson, G., et al. Serum enhancement of human endothelial cell attachment to and spreading on collagens I and IV does not require serum fibronectin or vitronectin. J. Cell Sci. 95:255–262; 1990.

    PubMed  CAS  Google Scholar 

  • Pratt, B. M.; Form, D.; Madri, J. A. Endothelial cell-extracellular matrix interactions. Ann. NY Acad. Sci. 460:274–288; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R. The pathogenesis of atherosclerosis: an update. N. Engl. J. Med. 314:488–500; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Saouaf, R.; Takasaki, I.; Eastman, E., et al. Fibronectin biosynthesis in the rat aorta in vitro: changes due to experimental hypertension. J. Clin. Invest. 88:1182–1189; 1991.

    PubMed  CAS  Google Scholar 

  • Sato, M.; Levesque, M. J.; Nerem, R. M. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286; 1987.

    PubMed  CAS  Google Scholar 

  • Schwartz, S. M.; Heimark, R. L.; Majesky, M. W. Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70:1177–1209; 1990.

    PubMed  CAS  Google Scholar 

  • Sprague, E. A.; Steinbach, B. L.; Nerem, R. M., et al. Influence of a laminar steady-state fluid imposed wall shear stress on the binding, internalization and degradation of low density lipoproteins by cultured arterial endothelium. Circulation 76:648–656; 1987.

    PubMed  CAS  Google Scholar 

  • Stehbens, W. E. Hemodynamics and atherosclerosis. Biorheology 19:95–101; 1982.

    PubMed  CAS  Google Scholar 

  • Sumpio, B. E.; Widmann, M. D.; Ricotta, J., et al. Increased ambient pressure stimulates proliferation and morphologic changes in cultured endothelial cells. J. Cell. Physiol. 158:133–139; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga, O.; Watanabe, T. Properties of endothelial cell and smooth muscle cell cultured in ambient pressure. In Vitro Cell. Dev. Biol. 23:528–534; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Tozzi, C. A.; Poiani, G. J.; Harangozo, A. M., et al. Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J. Clin. Invest. 84:1005–1012; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Uematsu, M.; Kitabatake, A.; Tanouchi, J., et al. Reduction in endothelial microfilament bundles in the low-shear region of the canine aorta: association with intimal plaque formation in hypercholesterolemia. Arterioscler. Thromb. 11:107–115; 1991.

    PubMed  CAS  Google Scholar 

  • Wang, N.; Butler, J. P.; Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Wechezak, A. R.; Wight, T. N.; Viggers, R. F., et al. Endothelial adherence under shear stress is dependent upon microfilament reorganization. J. Cell. Physiol. 139:136–146; 1989.

    Article  PubMed  CAS  Google Scholar 

  • White, G. E.; Gimbrone, M. A.; Fujiwara, K. Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J. Cell Biol. 97:639–647; 1983.

    Google Scholar 

  • Winer, B. J. Statistical principles in experimental design. In: Harlow, H. F., ed. McGraw-Hill series in psychology. New York: McGraw-Hill Book Company, Inc.; 1962.

    Google Scholar 

  • Yoshizumi, M.; Kurihara, H.; Sugiyama, T., et al. Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem. Biophys. Res. Commun. 161:859–864; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Yost, J. C.; Herman, I. M. Substratum-induced stress fiber assembly in vascular endothelial cells during spreading in vitro. J. Cell Sci. 95:507–520; 1990.

    PubMed  CAS  Google Scholar 

  • Young, W. C.; Herman, I. M. Extracellular matrix modulation of endothelial cell shape and motility following injury in vitro. J. Cell Sci. 73:19–32; 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoumine, O., Nerem, R.M. & Girard, F.R. Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells. In Vitro Cell Dev Biol - Animal 31, 45–54 (1995). https://doi.org/10.1007/BF02631337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631337

Key words

Navigation