Skip to main content

Advertisement

Log in

Generating new neurons to circumvent your fears: the role of IGF signaling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Extinction of fear memory is a particular form of cognitive function that is of special interest because of its involvement in the treatment of anxiety and mood disorders. Based on recent literature and our previous findings (EMBO J 30(19):4071–4083, 2011), we propose a new hypothesis that implies a tight relationship among IGF signaling, adult hippocampal neurogenesis and fear extinction. Our proposed model suggests that fear extinction-induced IGF2/IGFBP7 signaling promotes the survival of neurons at 2–4 weeks old that would participate in the discrimination between the original fear memory trace and the new safety memory generated during fear extinction. This is also called “pattern separation”, or the ability to distinguish similar but different cues (e.g., context). To understand the molecular mechanisms underlying fear extinction is therefore of great clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150

    CAS  PubMed  Google Scholar 

  2. Fischer A, Tsai LH (2009) Counteracting molecular pathways regulating the reduction of fear: implications for the treatment of anxiety diseases. In: Shiromani PJ, Keane TM, LeDoux JE (eds) Post-traumatic stress disorder: basic science and clinical practice. Humana, Totowa, NJ.pp 79–103

    Google Scholar 

  3. Kandel ER (2001) The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 21:565–611

    CAS  PubMed  Google Scholar 

  4. Mahan AL, Ressler KJ (2012) Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci 35:24–35

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Friedman MJ, Schnurr PP, McDonagh-Coyle A (1994) Post-traumatic stress disorder in the military veteran. Psychiatr Clin North Am 17:265–277

    CAS  PubMed  Google Scholar 

  6. Maren S, Chang CH (2006) Recent fear is resistant to extinction. Proc Natl Acad Sci USA 103:18020–18025

    CAS  PubMed  Google Scholar 

  7. Feldner MT, Monson CM, Friedman MJ (2007) A critical analysis of approaches to targeted PTSD prevention: current status and theoretically derived future directions. Behav Modif 31:80–116

    PubMed  Google Scholar 

  8. Pavlov IP (1927) Conditioned reflexes. Oxford University Press, London

    Google Scholar 

  9. Maren S (2011) Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70:830–845

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Milad MR, Quirk GJ (2012) Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 63:129–151

    PubMed  Google Scholar 

  11. Orsini CA, Maren S (2012) Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev 36:1773–1802

    PubMed Central  PubMed  Google Scholar 

  12. Tronson NC, Corcoran KA, Jovasevic V, Radulovic J (2012) Fear conditioning and extinction: emotional states encoded by distinct signaling pathways. Trends Neurosci 35:145–155

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Agis-Balboa RC, Arcos-Diaz D, Wittnam J, Govindarajan N, Blom K, Burkhardt S, Haladyniak U, Agbemenyah HY, Zovoilis A, Salinas-Riester G, Opitz L, Sananbenesi F, Fischer A (2011) A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories. EMBO J 30:4071–4083

    CAS  PubMed  Google Scholar 

  14. Sananbenesi F, Fischer A, Wang X, Schrick C, Neve R, Radulovic J, Tsai LH (2007) A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nat Neurosci 10:1012–1019

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Parsons RG, Ressler KJ (2013) Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci 16:146–153

    CAS  PubMed  Google Scholar 

  16. Lattal KM, Wood MA (2013) Epigenetics and persistent memory: implications for reconsolidation and silent extinction beyond the zero. Nat Neurosci 16:124–129

    CAS  PubMed Central  PubMed  Google Scholar 

  17. McGaugh JL (2000) Memory – a century of consolidation. Science 287:248–251

    CAS  PubMed  Google Scholar 

  18. McKenzie S, Eichenbaum H (2011) Consolidation and reconsolidation: two lives of memories? Neuron 71:224–233

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324:951–955

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Alberini CM (2011) The role of reconsolidation and the dynamic process of long-term memory formation and storage. Front Behav Neurosci 5:12

    PubMed Central  PubMed  Google Scholar 

  21. Duvarci S, Nader K (2004) Characterization of fear memory reconsolidation. J Neurosci 24:9269–9275

    CAS  PubMed  Google Scholar 

  22. Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726

    CAS  PubMed  Google Scholar 

  23. Tronson NC, Wiseman SL, Olausson P, Taylor JR (2006) Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nat Neurosci 9:167–169

    CAS  PubMed  Google Scholar 

  24. Alberini CM (2005) Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28:51–56

    CAS  PubMed  Google Scholar 

  25. Hupbach A, Gomez R, Hardt O, Nadel L (2007) Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn Mem 14:47–53

    PubMed  Google Scholar 

  26. Tronson NC, Taylor JR (2007) Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8:262–275

    CAS  PubMed  Google Scholar 

  27. Nicoll RA, Malenka RC (1999) Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci 868:515–525

    CAS  PubMed  Google Scholar 

  28. Sheinin A, Shavit S, Benveniste M (2001) Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine. Neuropharmacology 41:151–158

    CAS  PubMed  Google Scholar 

  29. Walker DL, Ressler KJ, Lu KT, Davis M (2002) Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 22:2343–2351

    CAS  PubMed  Google Scholar 

  30. Hofmann SG (2007) Enhancing exposure-based therapy from a translational research perspective. Behav Res Ther 45:1987–2001

    PubMed Central  PubMed  Google Scholar 

  31. Lee JL, Milton AL, Everitt BJ (2006) Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J Neurosci 26:10051–10056

    CAS  PubMed  Google Scholar 

  32. Eisenberg M, Kobilo T, Berman DE, Dudai Y (2003) Stability of retrieved memory: inverse correlation with trace dominance. Science 301:1102–1104

    CAS  PubMed  Google Scholar 

  33. Pedreira ME, Maldonado H (2003) Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38:863–869

    CAS  PubMed  Google Scholar 

  34. Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795

    CAS  PubMed  Google Scholar 

  35. Werner-Seidler A, Richardson R (2007) Effects of D-cycloserine on extinction: consequences of prior exposure to imipramine. Biol Psychiatry 62:1195–1197

    CAS  PubMed  Google Scholar 

  36. Kaplan GB, Moore KA (2011) The use of cognitive enhancers in animal models of fear extinction. Pharmacol Biochem Behav 99:217–228

    CAS  PubMed  Google Scholar 

  37. Myers KM, Carlezon WA Jr, Davis M (2011) Glutamate receptors in extinction and extinction-based therapies for psychiatric illness. Neuropsychopharmacology 36:274–293

    CAS  PubMed  Google Scholar 

  38. Quirk GJ, Pare D, Richardson R, Herry C, Monfils MH, Schiller D, Vicentic A (2010) Erasing fear memories with extinction training. J Neurosci 30:14993–14997

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Pare D, Duvarci S (2012) Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol 22:717–723

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Xu W, Südhof TC (2013) A neural circuit for memory specificity and generalization. Science 339(6125):1290–1295

    CAS  PubMed  Google Scholar 

  41. Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74

    CAS  PubMed  Google Scholar 

  42. Hugues S, Garcia R (2007) Reorganization of learning-associated prefrontal synaptic plasticity between the recall of recent and remote fear extinction memory. Learn Mem 14:520–524

    PubMed  Google Scholar 

  43. Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    PubMed Central  PubMed  Google Scholar 

  44. Quirk GJ, Likhtik E, Pelletier JG, Pare D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23:8800–8807

    CAS  PubMed  Google Scholar 

  45. Amano T, Duvarci S, Popa D, Pare D (2011) The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J Neurosci 31:15481–15489

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Wojtowicz JM (2012) Adult neurogenesis. From circuits to models. Behav Brain Res 227:490–496

    PubMed  Google Scholar 

  47. Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    CAS  PubMed  Google Scholar 

  48. McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102:419–457

    CAS  PubMed  Google Scholar 

  49. Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol 5:169–177

    CAS  PubMed  Google Scholar 

  50. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130

    CAS  PubMed  Google Scholar 

  51. Wang SH, Teixeira CM, Wheeler AL, Frankland PW (2009) The precision of remote context memories does not require the hippocampus. Nat Neurosci 12:253–255

    PubMed  Google Scholar 

  52. Morris RG, Garrud P, Rawlins JN, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    CAS  PubMed  Google Scholar 

  53. Kim JJ, Fanselow MS (1992) Modality-specific retrograde amnesia of fear. Science 256:675–677

    CAS  PubMed  Google Scholar 

  54. Gale GD, Anagnostaras SG, Godsil BP, Mitchell S, Nozawa T, Sage JR, Wiltgen B, Fanselow MS (2004) Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. J Neurosci 24:3810–3815

    CAS  PubMed  Google Scholar 

  55. Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J (2004) Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J Neurosci 24:1962–1966

    CAS  PubMed  Google Scholar 

  56. Lattal KM, Radulovic J, Lukowiak K (2006) Extinction: (corrected) does it or doesn’t it? The requirement of altered gene activity and new protein synthesis. Biol Psychiatry 60:344–351

    PubMed Central  PubMed  Google Scholar 

  57. Ji J, Maren S (2007) Hippocampal involvement in contextual modulation of fear extinction. Hippocampus 17:749–758

    PubMed  Google Scholar 

  58. Zelikowsky M, Bissiere S, Fanselow MS (2012) Contextual fear memories formed in the absence of the dorsal hippocampus decay across time. J Neurosci 32:3393–3397

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T, Zhang WN, Pothuizen HH, Feldon J (2004) Regional dissociations within the hippocampus – memory and anxiety. Neurosci Biobehav Rev 28:273–283

    CAS  PubMed  Google Scholar 

  60. Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES (2008) Genomic anatomy of the hippocampus. Neuron 60:1010–1021

    CAS  PubMed  Google Scholar 

  61. van Strien NM, Cappaert NL, Witter MP (2009) The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network. Nat Rev Neurosci 10:272–282

    PubMed  Google Scholar 

  62. Fanselow MS, Dong HW (2010) Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65:7–19

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Schmidt B, Marrone DF, Markus EJ (2011) Disambiguating the similar: the dentate gyrus and pattern separation. Behav Brain Res 226:56–65

    PubMed  Google Scholar 

  64. Hawley DF, Morch K, Christie BR, Leasure JL (2012) Differential response of hippocampal subregions to stress and learning. PLoS One 7:e53126

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, Zeng H, Fenton AA, Hen R (2013) Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77(5):955–968

    CAS  PubMed  Google Scholar 

  66. Kerimoglu C, Agis-Balboa RC, Kranz A, Stilling RM, Bahari-Javan S, Benito-Garagorri E, Halder R, Burkhardt S, Stewart AF, Fischer A (2013) Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J Neurosci 33:3452–3464

    CAS  PubMed  Google Scholar 

  67. Zovoilis A, Agbemenyah HY, Agis-Balboa RC, Stilling RM, Edbauer D, Rao P, Farinelli L, Delalle I, Schmitt A, Falkai P, Bahari-Javan S, Burkhardt S, Sananbenesi F, Fischer A (2011) MicroRNA-34c is a novel target to treat dementias. EMBO J 30:4299–4308

    CAS  PubMed  Google Scholar 

  68. Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A (2000) Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 911:369–391

    CAS  PubMed  Google Scholar 

  69. Jay TM, Witter MP (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 313:574–586

    CAS  PubMed  Google Scholar 

  70. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58

    CAS  PubMed  Google Scholar 

  71. Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149–179

    PubMed  Google Scholar 

  72. Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324:180–194

    CAS  PubMed  Google Scholar 

  73. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    CAS  PubMed  Google Scholar 

  74. Treves A, Tashiro A, Witter ME, Moser EI (2008) What is the mammalian dentate gyrus good for? Neuroscience 154:1155–1172

    CAS  PubMed  Google Scholar 

  75. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    CAS  PubMed  Google Scholar 

  76. Sahay A, Wilson DA, Hen R (2011) Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70:582–588

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589–596

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Hsieh J (2012) Orchestrating transcriptional control of adult neurogenesis. Genes Dev 26:1010–1021

    CAS  PubMed  Google Scholar 

  79. Jobe EM, McQuate AL, Zhao X (2012) Crosstalk among epigenetic pathways regulates neurogenesis. Front Neurosci 6:59

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Faigle R, Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta 1830:2435–2448

    CAS  PubMed  Google Scholar 

  81. Altman J (1963) Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat Rec 145:573–591

    CAS  PubMed  Google Scholar 

  82. Nottebohm F (2004) The road we travelled: discovery, choreography, and significance of brain replaceable neurons. Ann N Y Acad Sci 1016:628–658

    PubMed  Google Scholar 

  83. Kempermann G, Wiskott L, Gage FH (2004) Functional significance of adult neurogenesis. Curr Opin Neurobiol 14:186–191

    CAS  PubMed  Google Scholar 

  84. Jessberger S, Toni N, Clemenson GD Jr, Ray J, Gage FH (2008) Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11:888–893

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Lang MF, Shi Y (2012) Dynamic roles of microRNAs in neurogenesis. Front Neurosci 6:71

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, Schinder AF (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187

    CAS  PubMed  Google Scholar 

  88. Ge S, Yang CH, Hsu KS, Ming GL, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Tashiro A, Makino H, Gage FH (2007) Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci 27:3252–3259

    CAS  PubMed  Google Scholar 

  90. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18:2707–2712

    PubMed  Google Scholar 

  92. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    CAS  PubMed  Google Scholar 

  93. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    PubMed  Google Scholar 

  94. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czeh B (2010) Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol 20:1–17

    CAS  PubMed  Google Scholar 

  96. Kee N, Teixeira CM, Wang AH, Frankland PW (2007) Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 10:355–362

    CAS  PubMed  Google Scholar 

  97. Toni N, Teng EM, Bushong EA, Aimone JB, Zhao C, Consiglio A, van Praag H, Martone ME, Ellisman MH, Gage FH (2007) Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 10:727–734

    CAS  PubMed  Google Scholar 

  98. Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11

    CAS  PubMed  Google Scholar 

  99. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265

    CAS  PubMed  Google Scholar 

  100. Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103:17501–17506

    CAS  PubMed  Google Scholar 

  101. Pham K, McEwen BS, Ledoux JE, Nader K (2005) Fear learning transiently impairs hippocampal cell proliferation. Neuroscience 130:17–24

    CAS  PubMed  Google Scholar 

  102. Fotuhi M, Do D, Jack C (2012) Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 8:189–202

    CAS  PubMed  Google Scholar 

  103. Bremner JD, Elzinga B, Schmahl C, Vermetten E (2008) Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 167:171–186

    PubMed Central  PubMed  Google Scholar 

  104. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    CAS  PubMed  Google Scholar 

  105. Pollak DD, Monje FJ, Zuckerman L, Denny CA, Drew MR, Kandel ER (2008) An animal model of a behavioral intervention for depression. Neuron 60:149–161

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Takemura NU, Kato N (2008) Adult neurogenesis and systemic adaptation: animal experiments and clinical perspectives for PTSD. Prog Brain Res 167:99–109

    PubMed  Google Scholar 

  107. Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41:848–860

    PubMed  Google Scholar 

  108. Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ (2001) Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron 32:911–926

    CAS  PubMed  Google Scholar 

  109. Ko HG, Jang DJ, Son J, Kwak C, Choi JH, Ji YH, Lee YS, Son H, Kaang BK (2009) Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory. Mol Brain 2:1

    PubMed Central  PubMed  Google Scholar 

  110. Deng W, Saxe MD, Gallina IS, Gage FH (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci 29:13532–13542

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Noonan MA, Bulin SE, Fuller DC, Eisch AJ (2010) Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci 30:304–315

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Schipper P, Kiliaan AJ, Homberg JR (2011) A mixed polyunsaturated fatty acid diet normalizes hippocampal neurogenesis and reduces anxiety in serotonin transporter knockout rats. Behav Pharmacol 22:324–334

    CAS  PubMed  Google Scholar 

  113. Pan YW, Chan GC, Kuo CT, Storm DR, Xia Z (2012) Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory. J Neurosci 32:6444–6455

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Lehtinen MK, Zappaterra MW, Chen X, Yang YJ, Hill AD, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole AJ, Wong ET, LaMantia AS, Walsh CA (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:893–905

    CAS  PubMed Central  PubMed  Google Scholar 

  115. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA, Tonegawa S (2007) Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99

    CAS  PubMed  Google Scholar 

  116. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472:466–470

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727

    CAS  PubMed  Google Scholar 

  119. Aimone JB, Wiles J, Gage FH (2009) Computational influence of adult neurogenesis on memory encoding. Neuron 61:187–202

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Tronel S, Belnoue L, Grosjean N, Revest JM, Piazza PV, Koehl M, Abrous DN (2012) Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22:292–298

    PubMed  Google Scholar 

  121. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Barrera VR, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149:188–201

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Niibori Y, Yu TS, Epp JR, Akers KG, Josselyn SA, Frankland PW (2012) Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nat Commun 3:1253

    PubMed  Google Scholar 

  123. Fernandez AM, Torres-Aleman I (2012) The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13:225–239

    CAS  PubMed  Google Scholar 

  124. Harris JA, Westbrook RF (1998) Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology 140:105–115

    CAS  PubMed  Google Scholar 

  125. Corcoran KA, Desmond TJ, Frey KA, Maren S (2005) Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J Neurosci 25:8978–8987

    CAS  PubMed  Google Scholar 

  126. McGaugh JL, Castellano C, Brioni J (1990) Picrotoxin enhances latent extinction of conditioned fear. Behav Neurosci 104:264–267

    CAS  PubMed  Google Scholar 

  127. Berlau DJ, McGaugh JL (2006) Enhancement of extinction memory consolidation: the role of the noradrenergic and GABAergic systems within the basolateral amygdala. Neurobiol Learn Mem 86:123–132

    CAS  PubMed  Google Scholar 

  128. Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320

    CAS  PubMed  Google Scholar 

  129. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    CAS  PubMed  Google Scholar 

  130. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    CAS  PubMed  Google Scholar 

  131. Arnaldez FI, Helman LJ (2012) Targeting the insulin growth factor receptor 1. Hematol Oncol Clin North Am 26:527–542; vii–viii

    PubMed Central  PubMed  Google Scholar 

  132. Yang YL, Lu KT (2005) Facilitation of conditioned fear extinction by D-cycloserine is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase cascades and requires de novo protein synthesis in basolateral nucleus of amygdala. Neuroscience 134:247–260

    CAS  PubMed  Google Scholar 

  133. Koshibu K, Graff J, Beullens M, Heitz FD, Berchtold D, Russig H, Farinelli M, Bollen M, Mansuy IM (2009) Protein phosphatase 1 regulates the histone code for long-term memory. J Neurosci 29:13079–13089

    CAS  PubMed  Google Scholar 

  134. Filipkowski RK, Knapska E, Kaczmarek L (2006) c-Fos and Zif268 in learning and memory – studies on expression and function. In: Pinaud R, Tremere LA (eds) Immediate early genes in sensory processing, cognitive performance and neurological disorders. Springer, New York, pp 137–158

    Google Scholar 

  135. Wei W, Coelho CM, Li X, Marek R, Yan S, Anderson S, Meyers D, Mukherjee C, Sbardella G, Castellano S, Milite C, Rotili D, Mai A, Cole PA, Sah P, Kobor MS, Bredy TW (2012) p300/CBP-associated factor selectively regulates the extinction of conditioned fear. J Neurosci 32:11930–11941

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Tronson NC, Schrick C, Guzman YF, Huh KH, Srivastava DP, Penzes P, Guedea AL, Gao C, Radulovic J (2009) Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear. J Neurosci 29:3387–3394

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Fiorenza NG, Sartor D, Myskiw JC, Izquierdo I (2011) Treatment of fear memories: interactions between extinction and reconsolidation. An Acad Bras Cienc 83:1363–1372

    PubMed  Google Scholar 

  138. Soeter M, Kindt M (2011) Disrupting reconsolidation: pharmacological and behavioral manipulations. Learn Mem 18:357–366

    CAS  PubMed  Google Scholar 

  139. Bernard A, Lubbers LS, Tanis KQ, Luo R, Podtelezhnikov AA, Finney EM, McWhorter MM, Serikawa K, Lemon T, Morgan R, Copeland C, Smith K, Cullen V, Davis-Turak J, Lee CK, Sunkin SM, Loboda AP, Levine DM, Stone DJ, Hawrylycz MJ, Roberts CJ, Jones AR, Geschwind DH, Lein ES (2012) Transcriptional architecture of the primate neocortex. Neuron 73:1083–1099

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH (2008) Functional organization of the transcriptome in human brain. Nat Neurosci 11:1271–1282

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Winden KD, Oldham MC, Mirnics K, Ebert PJ, Swan CH, Levitt P, Rubenstein JL, Horvath S, Geschwind DH (2009) The organization of the transcriptional network in specific neuronal classes. Mol Syst Biol 5:291

    PubMed Central  PubMed  Google Scholar 

  142. de Carvalho Myskiw J, Benetti F, Izquierdo I (2013) Behavioral tagging of extinction learning. Proc Natl Acad Sci USA 110:1071–1076

    PubMed  Google Scholar 

  143. Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, Clemenson GD Jr, Suh H, Couillard-Despres S, Aigner L, Gage FH, Jessberger S (2012) Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci 32:3376–3387

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczynski B, Riddell A, Furlong EE (2012) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44:148–156

    CAS  PubMed  Google Scholar 

  145. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266

    CAS  PubMed  Google Scholar 

  146. Bondy CA, Lee WH (1993) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann N Y Acad Sci 692:33–43

    CAS  PubMed  Google Scholar 

  147. D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G (1996) The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol 13:227–255

    PubMed  Google Scholar 

  148. Dechiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor-II gene disrupted by targeting. Nature 345:78–80

    CAS  PubMed  Google Scholar 

  149. DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    CAS  PubMed  Google Scholar 

  150. Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82

    CAS  PubMed  Google Scholar 

  151. Sim FJ, Keyoung HM, Goldman JE, Kim DK, Jung HW, Roy NS, Goldman SA (2006) Neurocytoma is a tumor of adult neuronal progenitor cells. J Neurosci 26:12544–12555

    CAS  PubMed  Google Scholar 

  152. Ye P, D’Ercole AJ (2006) Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system. J Neurosci Res 83:1–6

    CAS  PubMed  Google Scholar 

  153. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316:112–115

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Alberini CM, Chen DY (2012) Memory enhancement: consolidation, reconsolidation and insulin-like growth factor 2. Trends Neurosci 35:274–283

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Bondy C, Werner H, Roberts CT Jr, LeRoith D (1992) Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 46:909–923

    CAS  PubMed  Google Scholar 

  156. Hodge RD, D’Ercole AJ, O’Kusky JR (2004) Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J Neurosci 24:10201–10210

    CAS  PubMed  Google Scholar 

  157. Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF (1991) Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc Natl Acad Sci USA 88:2199–2203

    CAS  PubMed  Google Scholar 

  158. Hodge RD, D’Ercole AJ, O’Kusky JR (2005) Increased expression of insulin-like growth factor-I (IGF-I) during embryonic development produces neocortical overgrowth with differentially greater effects on specific cytoarchitectonic areas and cortical layers. Brain Res Dev Brain Res 154:227–237

    CAS  PubMed  Google Scholar 

  159. Ozdinler PH, Macklis JD (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9:1371–1381

    PubMed  Google Scholar 

  160. Sosa L, Dupraz S, Laurino L, Bollati F, Bisbal M, Caceres A, Pfenninger KH, Quiroga S (2006) IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci 9:993–995

    CAS  PubMed  Google Scholar 

  161. Oishi K, Watatani K, Itoh Y, Okano H, Guillemot F, Nakajima K, Gotoh Y (2009) Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1. Proc Natl Acad Sci USA 106:13064–13069

    CAS  PubMed  Google Scholar 

  162. Hurtado-Chong A, Yusta-Boyo MJ, Vergano-Vera E, Bulfone A, de Pablo F, Vicario-Abejon C (2009) IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur J Neurosci 30:742–755

    PubMed  Google Scholar 

  163. O’Kusky JR, Ye P, D’Ercole AJ (2000) Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci 20:8435–8442

    PubMed  Google Scholar 

  164. Torres-Aleman I, Pons S, Arevalo MA (1994) The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J Neurosci Res 39:117–126

    CAS  PubMed  Google Scholar 

  165. Desai M, Li T, Ross MG (2011) Fetal hypothalamic neuroprogenitor cell culture: preferential differentiation paths induced by leptin and insulin. Endocrinology 152:3192–3201

    CAS  PubMed  Google Scholar 

  166. Ayer-le Lievre C, Stahlbom PA, Sara VR (1991) Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development 111:105–115

    CAS  PubMed  Google Scholar 

  167. Konishi Y, Takahashi K, Chui DH, Rosenfeld RG, Himeno M, Tabira T (1994) Insulin-like growth factor II promotes in vitro cholinergic development of mouse septal neurons: comparison with the effects of insulin-like growth factor I. Brain Res 649:53–61

    CAS  PubMed  Google Scholar 

  168. Hartnett L, Glynn C, Nolan CM, Grealy M, Byrnes L (2010) Insulin-like growth factor-2 regulates early neural and cardiovascular system development in zebrafish embryos. Int J Dev Biol 54:573–583

    CAS  PubMed  Google Scholar 

  169. Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31–46

    CAS  PubMed  Google Scholar 

  170. Cui QL, Zheng WH, Quirion R, Almazan G (2005) Inhibition of Src-like kinases reveals Akt-dependent and -independent pathways in insulin-like growth factor I-mediated oligodendrocyte progenitor survival. J Biol Chem 280:8918–8928

    CAS  PubMed  Google Scholar 

  171. Kappeler L, De Magalhaes FC, Dupont J, Leneuve P, Cervera P, Perin L, Loudes C, Blaise A, Klein R, Epelbaum J, Le Bouc Y, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6:e254

    PubMed Central  PubMed  Google Scholar 

  172. D’ercole AJ, Ye P (2008) Expanding the mind: insulin-like growth factor I and brain development. Endocrinology 149:5958–5962

    Google Scholar 

  173. Liu W, Ye P, O’Kusky JR, D’Ercole AJ (2009) Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J Neurosci Res 87:2821–2832

    CAS  PubMed  Google Scholar 

  174. Ye P, Popken GJ, Kemper A, McCarthy K, Popko B, D’Ercole AJ (2004) Astrocyte-specific overexpression of insulin-like growth factor-I promotes brain overgrowth and glial fibrillary acidic protein expression. J Neurosci Res 78:472–484

    CAS  PubMed  Google Scholar 

  175. Mairet-Coello G, Tury A, DiCicco-Bloom E (2009) Insulin-like growth factor-1 promotes G(1)/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. J Neurosci 29:775–788

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Walter HJ, Berry M, Hill DJ, Logan A (1997) Spatial and temporal changes in the insulin-like growth factor (IGF) axis indicate autocrine/paracrine actions of IGF-I within wounds of the rat brain. Endocrinology 138:3024–3034

    CAS  PubMed  Google Scholar 

  177. Carro E, Torres-Aleman I (2004) The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol 490:127–133

    CAS  PubMed  Google Scholar 

  178. Brown J, Jones EY, Forbes BE (2009) Interactions of IGF-II with the IGF2R/cation-independent mannose-6-phosphate receptor mechanism and biological outcomes. Vitam Horm 80:699–719

    CAS  PubMed  Google Scholar 

  179. Hawkes C, Kar S (2004) The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Res Brain Res Rev 44:117–140

    CAS  PubMed  Google Scholar 

  180. Poiraudeau S, Lieberherr M, Kergosie N, Corvol MT (1997) Different mechanisms are involved in intracellular calcium increase by insulin-like growth factors 1 and 2 in articular chondrocytes: voltage-gated calcium channels, and/or phospholipase C coupled to a pertussis-sensitive G-protein. J Cell Biochem 64:414–422

    CAS  PubMed  Google Scholar 

  181. Hawkes C, Jhamandas JH, Harris KH, Fu W, MacDonald RG, Kar S (2006) Single transmembrane domain insulin-like growth factor-II/mannose-6-phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway. J Neurosci 26:585–596

    CAS  PubMed  Google Scholar 

  182. Chen DY, Stern SA, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer RD, Alberini CM (2011) A critical role for IGF-II in memory consolidation and enhancement. Nature 469:491–497

    CAS  PubMed  Google Scholar 

  183. Kim HS, Nagalla SR, Oh Y, Wilson E, Roberts CT Jr, Rosenfeld RG (1997) Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc Natl Acad Sci USA 94:12981–12986

    CAS  PubMed  Google Scholar 

  184. Honegger B, Galic M, Kohler K, Wittwer F, Brogiolo W, Hafen E, Stocker H (2008) Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7:10

    PubMed Central  PubMed  Google Scholar 

  185. Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23:824–854

    CAS  PubMed  Google Scholar 

  186. Evdokimova V, Tognon CE, Benatar T, Yang W, Krutikov K, Pollak M, Sorensen PH, Seth A (2012) IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal 5:ra92

    PubMed  Google Scholar 

  187. Ocrant I, Fay CT, Parmelee JT (1990) Characterization of insulin-like growth factor binding proteins produced in the rat central nervous system. Endocrinology 127:1260–1267

    CAS  PubMed  Google Scholar 

  188. Hwa V, Oh Y, Rosenfeld RG (1999) The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr Rev 20:761–787

    CAS  PubMed  Google Scholar 

  189. Lee WH, Wang GM, Seaman LB, Vannucci SJ (1996) Coordinate IGF-I and IGFBP5 gene expression in perinatal rat brain after hypoxia-ischemia. J Cereb Blood Flow Metab 16:227–236

    CAS  PubMed  Google Scholar 

  190. Hynes MA, Brooks PJ, Van Wyk JJ, Lund PK (1988) Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain. Mol Endocrinol 2:47–54

    CAS  PubMed  Google Scholar 

  191. Stenvers KL, Zimmermann EM, Gallagher M, Lund PK (1994) Expression of insulin-like growth factor binding protein-4 and -5 mRNAs in adult rat forebrain. J Comp Neurol 339:91–105

    CAS  PubMed  Google Scholar 

  192. Zappaterra MW, Lehtinen MK (2012) The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci 69:2863–2878

    CAS  PubMed  Google Scholar 

  193. Carro E, Nunez A, Busiguina S, Torres-Aleman I (2000) Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci 20:2926–2933

    CAS  PubMed  Google Scholar 

  194. Tomanek B, Iqbal U, Blasiak B, Abulrob A, Albaghdadi H, Matyas JR, Ponjevic D, Sutherland GR (2012) Evaluation of brain tumor vessels specific contrast agents for glioblastoma imaging. Neurol Oncol 14:53–63

    CAS  Google Scholar 

  195. Anderson MF, Aberg MA, Nilsson M, Eriksson PS (2002) Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res 134:115–122

    CAS  PubMed  Google Scholar 

  196. Ramsey MM, Adams MM, Ariwodola OJ, Sonntag WE, Weiner JL (2005) Functional characterization of des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus. J Neurophysiol 94:247–254

    CAS  PubMed  Google Scholar 

  197. Deijen JB, de Boer H, van der Veen EA (1998) Cognitive changes during growth hormone replacement in adult men. Psychoneuroendocrinology 23:45–55

    CAS  PubMed  Google Scholar 

  198. Dhamoon MS, Noble JM, Craft S (2009) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 72:292–293; author reply 293–294

    PubMed  Google Scholar 

  199. Gronbladh A, Johansson J, Nostl A, Nyberg F, Hallberg M (2013) GH improves spatial memory and reverses certain anabolic androgenic steroid-induced effects in intact rats. J Endocrinol 216:31–41

    PubMed  Google Scholar 

  200. Castro-Alamancos MA, Torres-Aleman I (1994) Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide. Proc Natl Acad Sci USA 91:10203–10207

    CAS  PubMed  Google Scholar 

  201. Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902

    CAS  PubMed  Google Scholar 

  202. Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, Verdugo JM, Leroy F, Soya H, Nunez A, Torres-Aleman I (2010) Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67:834–846

    CAS  PubMed  Google Scholar 

  203. Cohen E, Dillin A (2008) The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci 9:759–767

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Piriz J, Muller A, Trejo JL, Torres-Aleman I (2011) IGF-I and the aging mammalian brain. Exp Gerontol 46:96–99

    CAS  PubMed  Google Scholar 

  205. Trejo JL, Llorens-Martin MV, Torres-Aleman I (2008) The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci 37:402–411

    CAS  PubMed  Google Scholar 

  206. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M, Tsai E, Plymate SR, Green PS, Leverenz J, Cross D, Gerton B (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69:29–38

    PubMed Central  PubMed  Google Scholar 

  207. Endres M, Piriz J, Gertz K, Harms C, Meisel A, Kronenberg G, Torres-Aleman I (2007) Serum insulin-like growth factor I and ischemic brain injury. Brain Res 1185:328–335

    CAS  PubMed  Google Scholar 

  208. Arpa J, Sanz-Gallego I, Medina-Baez J, Portela LV, Jardim LB, Torres-Aleman I, Saute JA (2011) Subcutaneous insulin-like growth factor-1 treatment in spinocerebellar ataxias: an open label clinical trial. Mov Disord 26:358–359

    PubMed  Google Scholar 

  209. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine–threonine protein kinase Akt. Science 275:661–665

    CAS  PubMed  Google Scholar 

  210. Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397

    CAS  PubMed  Google Scholar 

  211. Fernandez AM, Fernandez S, Carrero P, Garcia–Garcia M, Torres-Aleman I (2007) Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J Neurosci 27:8745–8756

    CAS  PubMed  Google Scholar 

  212. Schmeisser MJ, Baumann B, Johannsen S, Vindedal GF, Jensen V, Hvalby OC, Sprengel R, Seither J, Maqbool A, Magnutzki A, Lattke M, Oswald F, Boeckers TM, Wirth T (2012) IkappaB kinase/nuclear factor kappaB-dependent insulin-like growth factor 2 (Igf2) expression regulates synapse formation and spine maturation via Igf2 receptor signaling. J Neurosci 32:5688–5703

    CAS  PubMed  Google Scholar 

  213. Cline BH, Steinbusch HW, Malin D, Revishchin AV, Pavlova GV, Cespuglio R, Strekalova T (2012) The neuronal insulin sensitizer dicholine succinate reduces stress-induced depressive traits and memory deficit: possible role of insulin-like growth factor 2. BMC Neurosci 13:110

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Jung S, Lee Y, Kim G, Son H, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ (2012) Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress. BMC Neurosci 13:58

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Abbott MA, Wells DG, Fallon JR (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J Neurosci 19:7300–7308

    CAS  PubMed  Google Scholar 

  216. Cao P, Maximov A, Sudhof TC (2011) Activity-dependent IGF-1 exocytosis is controlled by the Ca(2+)-sensor synaptotagmin-10. Cell 145:300–311

    CAS  PubMed Central  PubMed  Google Scholar 

  217. Liou JC, Tsai FZ, Ho SY (2003) Potentiation of quantal secretion by insulin-like growth factor-1 at developing motoneurons in xenopus cell culture. J Physiol 553:719–728

    CAS  PubMed  Google Scholar 

  218. Xing C, Yin Y, Chang R, Gong X, He X, Xie Z (2007) Effects of insulin-like growth factor 1 on synaptic excitability in cultured rat hippocampal neurons. Exp Neurol 205:222–229

    CAS  PubMed  Google Scholar 

  219. Hwang O, Choi HJ (1995) Induction of gene expression of the catecholamine-synthesizing enzymes by insulin-like growth factor-I. J Neurochem 65:1988–1996

    CAS  PubMed  Google Scholar 

  220. Blair LA, Marshall J (1997) IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19:421–429

    CAS  PubMed  Google Scholar 

  221. Ster J, Colomer C, Monzo C, Duvoid-Guillou A, Moos F, Alonso G, Hussy N (2005) Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors. J Neurosci 25:2267–2276

    CAS  PubMed  Google Scholar 

  222. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435

    CAS  PubMed Central  PubMed  Google Scholar 

  223. Leventhal PS, Randolph AE, Vesbit TE, Schenone A, Windebank A, Feldman EL (1995) Insulin-like growth factor-II as a paracrine growth factor in human neuroblastoma cells. Exp Cell Res 221:179–186

    CAS  PubMed  Google Scholar 

  224. Aberg MA, Aberg ND, Palmer TD, Alborn AM, Carlsson-Skwirut C, Bang P, Rosengren LE, Olsson T, Gage FH, Eriksson PS (2003) IGF-I has a direct proliferative effect in adult hippocampal progenitor cells. Mol Cell Neurosci 24:23–40

    CAS  PubMed  Google Scholar 

  225. Bateman JM, McNeill H (2006) Insulin/IGF signalling in neurogenesis. Cell Mol Life Sci 63:1701–1705

    CAS  PubMed  Google Scholar 

  226. Rodriguez S, Gaunt TR, Day IN (2007) Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease. Hum Genet 122:1–21

    CAS  PubMed  Google Scholar 

  227. Chao W, D’Amore PA (2008) IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev 19:111–120

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Scolnick JA, Cui K, Duggan CD, Xuan S, Yuan XB, Efstratiadis A, Ngai J (2008) Role of IGF signaling in olfactory sensory map formation and axon guidance. Neuron 57:847–857

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Broughton S, Partridge L (2009) Insulin/IGF-like signalling, the central nervous system and aging. Biochem J 418:1–12

    CAS  PubMed  Google Scholar 

  230. Lee E, Son H (2009) Adult hippocampal neurogenesis and related neurotrophic factors. BMB Rep 42:239–244

    CAS  PubMed  Google Scholar 

  231. Weber MM, Melmed S, Rosenbloom J, Yamasaki H, Prager D (1992) Rat somatotroph insulin-like growth factor-II (IGF-II) signaling: role of the IGF-I receptor. Endocrinology 131:2147–2153

    CAS  PubMed  Google Scholar 

  232. Hixon ML, Paccagnella L, Millham R, Perez-Olle R, Gualberto A (2010) Development of inhibitors of the IGF-IR/PI3K/Akt/mTOR pathway. Rev Recent Clin Trials 5:189–208

    CAS  PubMed  Google Scholar 

  233. Duman RS (2004) Depression: a case of neuronal life and death? Biol Psychiatry 56:140–145

    PubMed  Google Scholar 

  234. Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13:1338–1344

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Greenwood BN, Fleshner M (2008) Exercise, learned helplessness, and the stress-resistant brain. Neuromol Med 10:81–98

    CAS  Google Scholar 

  236. Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A, Wolf SA (2010) Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci 4:189

    PubMed Central  PubMed  Google Scholar 

  237. Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634

    CAS  PubMed  Google Scholar 

  238. Llorens-Martin M, Torres-Aleman I, Trejo JL (2010) Exercise modulates insulin-like growth factor 1-dependent and -independent effects on adult hippocampal neurogenesis and behaviour. Mol Cell Neurosci 44:109–117

    CAS  PubMed  Google Scholar 

  239. Bruel-Jungerman E, Veyrac A, Dufour F, Horwood J, Laroche S, Davis S (2009) Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS One 4:e7901

    PubMed Central  PubMed  Google Scholar 

  240. Duman CH, Schlesinger L, Terwilliger R, Russell DS, Newton SS, Duman RS (2009) Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav Brain Res 198:366–371

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Aimone JB, Deng W, Gage FH (2010) Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci 14:325–337

    PubMed Central  PubMed  Google Scholar 

  242. Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139:814–827

    CAS  PubMed  Google Scholar 

  243. Aberg ND, Brywe KG, Isgaard J (2006) Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J 6:53–80

    Google Scholar 

  244. Llorens-Martin M, Torres-Aleman I, Trejo JL (2009) Mechanisms mediating brain plasticity: IGF1 and adult hippocampal neurogenesis. Neuroscientist 15:134–148

    CAS  PubMed  Google Scholar 

  245. Ziegler AN, Schneider JS, Qin M, Tyler WA, Pintar JE, Fraidenraich D, Wood TL, Levison SW (2012) Igf-II promotes stemness of neural restricted precursors. Stem Cells 30:1265–1276

    CAS  PubMed  Google Scholar 

  246. Rotwein P, Burgess SK, Milbrandt JD, Krause JE (1988) Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci USA 85:265–269

    CAS  PubMed  Google Scholar 

  247. Valentino KL, Ocrant I, Rosenfeld RG (1990) Developmental expression of insulin-like growth factor-II receptor immunoreactivity in the rat central nervous system. Endocrinology 126:914–920

    CAS  PubMed  Google Scholar 

  248. Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11:951–966

    CAS  PubMed  Google Scholar 

  249. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bosse M, Lajoie G, Bhatia M (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021

    CAS  PubMed  Google Scholar 

  251. Castilla-Cortazar I, Garcia-Fernandez M, Delgado G, Puche JE, Sierra I, Barhoum R, Gonzalez-Baron S (2011) Hepatoprotection and neuroprotection induced by low doses of IGF-II in aging rats. J Transl Med 9:103

    CAS  PubMed Central  PubMed  Google Scholar 

  252. Fernandez C, Tatard VM, Bertrand N, Dahmane N (2010) Differential modulation of sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network. Dev Neurosci 32:59–70

    CAS  PubMed  Google Scholar 

  253. Corcoran RB, Raveh TB, Barakat MT, Lee EY, Scott MP (2008) Insulin-like growth factor 2 is required for progression to advanced medulloblastoma in patched1 heterozygous mice. Cancer Res 68:8788–8795

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Kita Y, Ago Y, Takano E, Fukada A, Takuma K, Matsuda T (2013) Galantamine increases hippocampal insulin-like growth factor 2 expression via alpha7 nicotinic acetylcholine receptors in mice. Psychopharmacology (Berl) 225:543–551

    CAS  Google Scholar 

  255. Baxter RC (1991) Insulin-like growth factor (IGF) binding proteins: the role of serum IGFBPs in regulating IGF availability. Acta Paediatr Scand Suppl 372:107–114; discussion 115

    CAS  PubMed  Google Scholar 

  256. Oh Y, Nagalla SR, Yamanaka Y, Kim HS, Wilson E, Rosenfeld RG (1996) Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and -II. J Biol Chem 271:30322–30325

    CAS  PubMed  Google Scholar 

  257. Yamanaka Y, Wilson EM, Rosenfeld RG, Oh Y (1997) Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. J Biol Chem 272:30729–30734

    CAS  PubMed  Google Scholar 

  258. Suzuki H, Igarashi S, Nojima M, Maruyama R, Yamamoto E, Kai M, Akashi H, Watanabe Y, Yamamoto H, Sasaki Y, Itoh F, Imai K, Sugai T, Shen L, Issa JP, Shinomura Y, Tokino T, Toyota M (2010) IGFBP7 is a p53-responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype. Carcinogenesis 31:342–349

    CAS  PubMed  Google Scholar 

  259. Jiang B, Kumar SD, Loh WT, Manikandan J, Ling EA, Tay SS, Dheen ST (2008) Global gene expression analysis of cranial neural tubes in embryos of diabetic mice. J Neurosci Res 86:3481–3493

    CAS  PubMed  Google Scholar 

  260. Tomimaru Y, Eguchi H, Wada H, Noda T, Murakami M, Kobayashi S, Marubashi S, Takeda Y, Tanemura M, Umeshita K, Doki Y, Mori M, Nagano H (2010) Insulin-like growth factor-binding protein 7 alters the sensitivity to interferon-based anticancer therapy in hepatocellular carcinoma cells. Br J Cancer 102:1483–1490

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR (2008) Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 132:363–374

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Csoregh L, Andersson E, Fried G (2009) Transcriptional analysis of estrogen effects in human embryonic neurons and glial cells. Neuroendocrinology 89:171–186

    PubMed  Google Scholar 

  263. Tamura K, Hashimoto K, Suzuki K, Yoshie M, Kutsukake M, Sakurai T (2009) Insulin-like growth factor binding protein-7 (IGFBP7) blocks vascular endothelial cell growth factor (VEGF)-induced angiogenesis in human vascular endothelial cells. Eur J Pharmacol 610:61–67

    CAS  PubMed  Google Scholar 

  264. Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36:827–835

    CAS  PubMed  Google Scholar 

  265. Heine VM, Zareno J, Maslam S, Joels M, Lucassen PJ (2005) Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 21:1304–1314

    PubMed  Google Scholar 

  266. Ostrovsky O, Ahmed NT, Argon Y (2009) The chaperone activity of GRP94 toward insulin-like growth factor II is necessary for the stress response to serum deprivation. Mol Biol Cell 20:1855–1864

    CAS  PubMed Central  PubMed  Google Scholar 

  267. Gennigens C, Menetrier-Caux C, Droz JP (2006) Insulin-like growth factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol 58:124–145

    CAS  PubMed  Google Scholar 

  268. Brown J, Jones EY, Forbes BE (2009) Keeping IGF-II under control: lessons from the IGF-II-IGF2R crystal structure. Trends Biochem Sci 34:612–619

    CAS  PubMed  Google Scholar 

  269. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    CAS  PubMed  Google Scholar 

  270. Heidegger I, Pircher A, Klocker H, Massoner P (2011) Targeting the insulin-like growth factor network in cancer therapy. Cancer Biol Ther 11:701–707

    CAS  PubMed  Google Scholar 

  271. Pietrzkowski Z, Wernicke D, Porcu P, Jameson BA, Baserga R (1992) Inhibition of cellular proliferation by peptide analogues of insulin-like growth factor 1. Cancer Res 52:6447–6451

    CAS  PubMed  Google Scholar 

  272. Fukunaga K, Kawano T (2003) Akt is a molecular target for signal transduction therapy in brain ischemic insult. J Pharmacol Sci 92:317–327

    CAS  PubMed  Google Scholar 

  273. Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242

    CAS  PubMed  Google Scholar 

  274. Clemmons DR (1997) Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev 8:45–62

    CAS  PubMed  Google Scholar 

  275. Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67:1348–1361

    CAS  PubMed  Google Scholar 

  276. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF (1991) Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352:73–77

    CAS  PubMed  Google Scholar 

  277. Hartmann W, Koch A, Brune H, Waha A, Schuller U, Dani I, Denkhaus D, Langmann W, Bode U, Wiestler OD, Schilling K, Pietsch T (2005) Insulin-like growth factor II is involved in the proliferation control of medulloblastoma and its cerebellar precursor cells. Am J Pathol 166:1153–1162

    CAS  PubMed  Google Scholar 

  278. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H (2001) Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189

    CAS  PubMed  Google Scholar 

  279. Vincent AM, Feldman EL (2002) Control of cell survival by IGF signaling pathways. Growth Horm IGF Res 12:193–197

    CAS  PubMed  Google Scholar 

  280. Mathieu C, Sii-Felice K, Fouchet P, Etienne O, Haton C, Mabondzo A, Boussin FD, Mouthon MA (2008) Endothelial cell-derived bone morphogenetic proteins control proliferation of neural stem/progenitor cells. Mol Cell Neurosci 38:569–577

    CAS  PubMed  Google Scholar 

  281. Segu L, Lecomte MJ, Wolff M, Santamaria J, Hen R, Dumuis A, Berrard S, Bockaert J, Buhot MC, Compan V (2010) Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice. PLoS One 5:e9529

    PubMed Central  PubMed  Google Scholar 

  282. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903

    CAS  PubMed Central  PubMed  Google Scholar 

  283. Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M (2012) Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 11:384–400

    CAS  PubMed  Google Scholar 

  284. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    CAS  PubMed  Google Scholar 

  285. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  286. Fischer A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDAC(s) to treat cognitive disorders. Trends Pharmacol Sci 31:605–617

    CAS  PubMed  Google Scholar 

  287. Houston I, Peter CJ, Mitchell A, Straubhaar J, Rogaev E, Akbarian S (2013) Epigenetics in the human brain. Neuropsychopharmacology 38:183–197

    CAS  PubMed  Google Scholar 

  288. Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD (2004) Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 279:40545–40559

    CAS  PubMed  Google Scholar 

  289. Fontan-Lozano A, Romero-Granados R, Troncoso J, Munera A, Delgado-Garcia JM, Carrion AM (2008) Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. Mol Cell Neurosci 39:193–201

    CAS  PubMed  Google Scholar 

  290. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756

    CAS  PubMed  Google Scholar 

  291. Bousiges O, Vasconcelos AP, Neidl R, Cosquer B, Herbeaux K, Panteleeva I, Loeffler JP, Cassel JC, Boutillier AL (2010) Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology 35:2521–2537

    CAS  PubMed  Google Scholar 

  292. Sananbenesi F, Fischer A (2009) The epigenetic bottleneck of neurodegenerative and psychiatric diseases. Biol Chem 390:1145–1153

    CAS  PubMed  Google Scholar 

  293. Sananbenesi F, Fischer A, Schrick C, Spiess J, Radulovic J (2002) Phosphorylation of hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during contextual fear conditioning: interactions between Erk-1/2 and Elk-1. Mol Cell Neurosci 21:463–476

    CAS  PubMed  Google Scholar 

  294. Kelleher RJ 3rd, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479

    CAS  PubMed  Google Scholar 

  295. Chwang WB, O’Riordan KJ, Levenson JM, Sweatt JD (2006) ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 13:322–328

    CAS  PubMed  Google Scholar 

  296. Kimura A, Matsubara K, Horikoshi M (2005) A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem 138:647–662

    CAS  PubMed  Google Scholar 

  297. Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A (2012) Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J Alzheimers Dis 33:35–44

    Google Scholar 

  298. Bahari-Javan S, Maddalena A, Kerimoglu C, Wittnam J, Held T, Bahr M, Burkhardt S, Delalle I, Kugler S, Fischer A, Sananbenesi F (2012) HDAC1 regulates fear extinction in mice. J Neurosci 32:5062–5073

    CAS  PubMed  Google Scholar 

  299. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, Lu J, Fischer A (2013) Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med 5:52–63

    CAS  PubMed Central  PubMed  Google Scholar 

  300. Lattal KM, Barrett RM, Wood MA (2007) Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behav Neurosci 121:1125–1131

    CAS  PubMed  Google Scholar 

  301. Stafford JM, Raybuck JD, Ryabinin AE, Lattal KM (2012) Increasing histone acetylation in the hippocampus-infralimbic network enhances fear extinction. Biol Psychiatry 72:25–33

    CAS  PubMed Central  PubMed  Google Scholar 

  302. Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M (2007) Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 14:268–276

    CAS  PubMed  Google Scholar 

  303. Bredy TW, Barad M (2008) The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear. Learn Mem 15:39–45

    CAS  PubMed  Google Scholar 

  304. Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    CAS  PubMed Central  PubMed  Google Scholar 

  305. Gräff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai LH (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483:222–226

    PubMed Central  PubMed  Google Scholar 

  306. McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, Wood MA (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31:764–774

    CAS  PubMed Central  PubMed  Google Scholar 

  307. Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S, Minns M (2007) Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci USA 104:10164–10169

    CAS  PubMed  Google Scholar 

  308. Sharma RP, Grayson DR, Gavin DP (2008) Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: analysis of the national brain databank microarray collection. Schizophr Res 98:111–117

    PubMed Central  PubMed  Google Scholar 

  309. Quinti L, Chopra V, Rotili D, Valente S, Amore A, Franci G, Meade S, Valenza M, Altucci L, Maxwell MM, Cattaneo E, Hersch S, Mai A, Kazantsev A (2010) Evaluation of histone deacetylases as drug targets in Huntington’s disease models. Study of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model. PLoS Curr 2 pii: rrn1172

  310. Wang Z, Yang D, Zhang X, Li T, Li J, Tang Y, Le W (2011) Hypoxia-induced down-regulation of neprilysin by histone modification in mouse primary cortical and hippocampal neurons. PLoS One 6:e19229

    CAS  PubMed Central  PubMed  Google Scholar 

  311. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    CAS  PubMed  Google Scholar 

  312. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    CAS  PubMed  Google Scholar 

  313. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    CAS  PubMed  Google Scholar 

  314. Wood TL, O’Donnell SL, Levison SW (1995) Cytokines regulate IGF binding proteins in the CNS. Prog Growth Factor Res 6:181–187

    CAS  PubMed  Google Scholar 

  315. Holmin S, Mathiesen T, Langmoen IA, Sandberg Nordqvist AC (2001) Depolarization induces insulin-like growth factor binding protein-2 expression in vivo via NMDA receptor stimulation. Growth Horm IGF Res 11:399–406

    CAS  PubMed  Google Scholar 

  316. Itoh M, Ide S, Takashima S, Kudo S, Nomura Y, Segawa M, Kubota T, Mori H, Tanaka S, Horie H, Tanabe Y, Goto Y (2007) Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. J Neuropathol Exp Neurol 66:117–123

    CAS  PubMed  Google Scholar 

  317. Tropea D, Giacometti E, Wilson NR, Beard C, McCurry C, Fu DD, Flannery R, Jaenisch R, Sur M (2009) Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA 106:2029–2034

    CAS  PubMed  Google Scholar 

  318. Garcia-Segura LM, Rodriguez JR, Torres-Aleman I (1997) Localization of the insulin-like growth factor I receptor in the cerebellum and hypothalamus of adult rats: an electron microscopic study. J Neurocytol 26:479–490

    CAS  PubMed  Google Scholar 

  319. Sehat B, Tofigh A, Lin Y, Trocme E, Liljedahl U, Lagergren J, Larsson O (2010) SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci Signal 3:ra10

    PubMed  Google Scholar 

  320. Kelley KM, Oh Y, Gargosky SE, Gucev Z, Matsumoto T, Hwa V, Ng L, Simpson DM, Rosenfeld RG (1996) Insulin-like growth factor-binding proteins (IGFBPs) and their regulatory dynamics. Int J Biochem Cell Biol 28:619–637

    CAS  PubMed  Google Scholar 

  321. Ruan W, Xu E, Xu F, Ma Y, Deng H, Huang Q, Lv B, Hu H, Lin J, Cui J, Di M, Dong J, Lai M (2007) IGFBP7 plays a potential tumor suppressor role in colorectal carcinogenesis. Cancer Biol Ther 6:354–359

    CAS  PubMed  Google Scholar 

  322. Alic N, Hoddinott MP, Vinti G, Partridge L (2011) Lifespan extension by increased expression of the Drosophila homologue of the IGFBP7 tumour suppressor. Aging Cell 10:137–147

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Lin J, Lai M, Huang Q, Ma Y, Cui J, Ruan W (2007) Methylation patterns of IGFBP7 in colon cancer cell lines are associated with levels of gene expression. J Pathol 212:83–90

    CAS  PubMed  Google Scholar 

  324. Lin J, Lai M, Huang Q, Ruan W, Ma Y, Cui J (2008) Reactivation of IGFBP7 by DNA demethylation inhibits human colon cancer cell growth in vitro. Cancer Biol Ther 7:1896–1900

    CAS  PubMed  Google Scholar 

  325. Chen Y, Cui T, Knosel T, Yang L, Zoller K, Petersen I (2011) IGFBP7 is a p53 target gene inactivated in human lung cancer by DNA hypermethylation. Lung Cancer 73:38–44

    PubMed  Google Scholar 

  326. Heesch S, Bartram I, Neumann M, Reins J, Mossner M, Schlee C, Stroux A, Haferlach T, Goekbuget N, Hoelzer D, Hofmann WK, Thiel E, Baldus CD (2011) Expression of IGFBP7 in acute leukemia is regulated by DNA methylation. Cancer Sci 102:253–259

    CAS  PubMed  Google Scholar 

  327. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S, Irvine M, Scolyer RA, Mann GJ, Becker JC, Kefford RF, Rizos H (2010) IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell 141:717–727

    CAS  PubMed  Google Scholar 

  328. Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53:857–869

    CAS  PubMed  Google Scholar 

  329. Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A, Yancey CR, Rivera IM, Rubio MD, Rumbaugh G, Sweatt JD (2010) Cortical DNA methylation maintains remote memory. Nat Neurosci 13:664–666

    CAS  PubMed Central  PubMed  Google Scholar 

  330. Zovkic IB, Sweatt JD (2013) Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology 38:77–93

    CAS  PubMed  Google Scholar 

  331. Leach PT, Poplawski SG, Kenney JW, Hoffman B, Liebermann DA, Abel T, Gould TJ (2012) Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory. Learn Mem 19:319–324

    CAS  PubMed  Google Scholar 

  332. Ma DK, Jang M-H, Guo JU, Kitabatake Y, Chang M-l, Pow-anpongkul N, Flavell RA, Lu B, Ming G-l, Song H (2009) Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323:1074–1077

    CAS  PubMed Central  PubMed  Google Scholar 

  333. Xu X, Coats JK, Yang CF, Wang A, Ahmed OM, Alvarado M, Izumi T, Shah NM (2012) Modular genetic control of sexually dimorphic behaviors. Cell 148:596–607

    CAS  PubMed Central  PubMed  Google Scholar 

  334. Insel TR, Fernald RD (2004) How the brain processes social information: searching for the social brain. Annu Rev Neurosci 27:697–722

    CAS  PubMed  Google Scholar 

  335. Kellendonk C, Simpson EH, Kandel ER (2009) Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci 32:347–358

    CAS  PubMed  Google Scholar 

  336. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    CAS  PubMed  Google Scholar 

  337. Schratt G (2009) MicroRNAs at the synapse. Nat Rev Neurosci 10:842–849

    CAS  PubMed  Google Scholar 

  338. Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125:7–17

    CAS  PubMed  Google Scholar 

  339. O’Carroll D, Schaefer A (2013) General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology 38:39–54

    PubMed  Google Scholar 

  340. Balzer E, Heine C, Jiang Q, Lee VM, Moss EG (2010) LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development 137:891–900

    CAS  PubMed  Google Scholar 

  341. Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA, le Sage C, Agami R, Snijders PJ, Steenbergen RD (2010) Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 9:167

    PubMed Central  PubMed  Google Scholar 

  342. Ge Y, Sun Y, Chen J (2011) IGF-II is regulated by microRNA-125b in skeletal myogenesis. J Cell Biol 192:69–81

    CAS  PubMed  Google Scholar 

  343. Griggs EM, Young EJ, Rumbaugh G, Miller CA (2013) MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 33:1734–1740

    CAS  PubMed Central  PubMed  Google Scholar 

  344. Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M, Kowarsch A, Michaluk P, Dzwonek J, Arnsperger T, Wilczynski G, Merkenschlager M, Theis FJ, Kohr G, Kaczmarek L, Schutz G (2010) MicroRNA loss enhances learning and memory in mice. J Neurosci 30:14835–14842

    CAS  PubMed  Google Scholar 

  345. Lin Q, Wei W, Coelho CM, Li X, Baker-Andresen D, Dudley K, Ratnu VS, Boskovic Z, Kobor MS, Sun YE, Bredy TW (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 14:1115–1117

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Agis-Balboa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agis-Balboa, R.C., Fischer, A. Generating new neurons to circumvent your fears: the role of IGF signaling. Cell. Mol. Life Sci. 71, 21–42 (2014). https://doi.org/10.1007/s00018-013-1316-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1316-2

Keywords

Navigation