Skip to main content

Advertisement

Log in

CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Astrocytic excitability relies on cytosolic calcium increases as a key mechanism, whereby astrocytes contribute to synaptic transmission and hence learning and memory. While it is a cornerstone of neurosciences that experiences are remembered, because transmitters activate gene expression in neurons, long-term adaptive astrocyte plasticity has not been described. Here, we investigated whether the transcription factor CREB mediates adaptive plasticity-like phenomena in astrocytes. We found that activation of CREB-dependent transcription reduced the calcium responses induced by ATP, noradrenaline, or endothelin-1. As to the mechanism, expression of VP16-CREB, a constitutively active CREB mutant, had no effect on basal cytosolic calcium levels, extracellular calcium entry, or calcium mobilization from lysosomal-related acidic stores. Rather, VP16-CREB upregulated sigma-1 receptor expression thereby increasing the release of calcium from the endoplasmic reticulum and its uptake by mitochondria. Sigma-1 receptor was also upregulated in vivo upon VP16-CREB expression in astrocytes. We conclude that CREB decreases astrocyte responsiveness by increasing calcium signalling at the endoplasmic reticulum–mitochondria interface, which might be an astrocyte-based form of long-term depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

IP3 :

Inositol 1,4,5-trisphosphate

CRE:

cAMP regulatory element

CREB:

cAMP regulatory element-binding protein

LTD:

Long-term depression

NA:

Noradrenaline

PKA:

Protein-kinase A

PKC:

Protein-kinase C

MSK1:

Mitogen- and stress-activated protein kinase

RSK2:

Ribosomal protein S6 kinase

FBS:

Fetal bovine serum

ET-1:

Endothelin-1

Glu:

Glutamate

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone

GPN:

Gly-phe-β-naphthylamide

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

CEPIA:

Calcium-measuring organelle-entrapped protein indicators

PBS:

Phosphate-buffered saline

NGS:

Normal goat serum

GPCR:

Gq protein-coupled receptors

MCU:

Mitochondrial calcium uniporter

NAADP:

Nicotinic acid adenine dinucleotide phosphate

MAM:

Mitochondria-associated ER membranes

WT:

Wild-type

References

  1. Churchill GC, Okada Y, Thomas JM, Genazzani AA, Patel S, Galione A (2002) NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111:703–708. doi:10.1016/S0092-8674(02)01082-6

    Article  CAS  PubMed  Google Scholar 

  2. Yamasaki M, Masgrau R, Morgan AJ, Churchill GC, Patel S, Ashcroft SJH, Galione A (2004) Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells. J Biol Chem 279:7234–7240

    Article  CAS  PubMed  Google Scholar 

  3. Barceló-Torns M, Lewis AM, Gubern A, Barneda D, Bloor-Young D, Picatoste F, Churchill GC, Claro E, Masgrau R (2011) NAADP mediates ATP-induced Ca2 + signals in astrocytes. FEBS Lett 585:2300–2306. doi:10.1016/j.febslet.2011.05.062

    Article  PubMed  Google Scholar 

  4. Li H, Wang X, Zhang N, Gottipati MK, Parpura V, Ding S (2014) Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Cell Calcium 56:457–466. doi:10.1016/j.ceca.2014.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19:182–189. doi:10.1038/nn.4201

    Article  CAS  PubMed  Google Scholar 

  6. Bélanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11:281–296. doi:10.1038/nrn1722

    PubMed  PubMed Central  Google Scholar 

  7. Verkhratsky A, Nedergaard M, Hertz L (2014) Why are astrocytes important? Neurochem Res 40:389–401. doi:10.1007/s11064-014-1403-2

    Article  PubMed  Google Scholar 

  8. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378. doi:10.3389/fncel.2014.00378

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zorec R, Horvat A, Vardjan N, Verkhratsky A (2015) Memory formation shaped by astroglia. Front Integr Neurosci 9:56. doi:10.3389/fnint.2015.00056

    Article  PubMed  PubMed Central  Google Scholar 

  10. Byrne JH, Kandel ER (1996) Presynaptic facilitation revisited: state and time dependence. J Neurosci 16:425–435

    CAS  PubMed  Google Scholar 

  11. Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89–101. doi:10.1016/S0896-6273(00)80026-4

    Article  CAS  PubMed  Google Scholar 

  12. Benito E, Barco A (2010) CREB’s control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends Neurosci 33:230–240. doi:10.1016/j.tins.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  13. Carriba P, Pardo L, Parra-Damas A, Lichtenstein MP, Saura CA, Pujol A, Masgrau R, Galea E (2012) ATP and noradrenaline activate CREB in astrocytes via noncanonical Ca2+ and cyclic AMP independent pathways. Glia 60:1330–1344

    Article  PubMed  Google Scholar 

  14. Deak M, Clifton AD, Lucocq JM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441. doi:10.1093/emboj/17.15.4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273:959–963. doi:10.1126/science.273.5277.959

    Article  CAS  PubMed  Google Scholar 

  16. Altarejos JY, Montminy M (2011) CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol 12:141–151. doi:10.1038/nrm3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108:689–703. doi:10.1016/S0092-8674(02)00657-8

    Article  CAS  PubMed  Google Scholar 

  18. Pardo L, Schlüter A, Valor LM, Barco A, Giralt M, Golbano A, Hidalgo J, Jia P, Zhao Z, Jové M, Portero-Otin M, Ruiz M, Giménez-Llort L, Masgrau R, Pujol A, Galea E (2016) Targeted activation of CREB in reactive astrocytes is neuroprotective in focal acute cortical injury. Glia 64:853–874. doi:10.1002/glia.22969

    Article  PubMed  Google Scholar 

  19. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450 (3838314)

    CAS  PubMed  Google Scholar 

  20. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reusch JE, Colton LA, Klemm DJ (2000) CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 20:1008–1020. doi:10.1128/MCB.20.3.1008-1020.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rothem L, Stark M, Assaraf YG (2004) Impaired CREB-1 phosphorylation in antifolate-resistant cell lines with down-regulation of the reduced folate carrier gene. Mol Pharmacol 66:1536–1543. doi:10.1124/mol.104.004135

    Article  CAS  PubMed  Google Scholar 

  23. Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC (2016) Locus ceruleus norepinephrine release: a central regulator of CNS spatio-temporal activation? Front Synaptic Neurosci. doi:10.3389/fnsyn.2016.00025

    PubMed  PubMed Central  Google Scholar 

  24. Mather S, Sakaki M, Harley CW (2000) Norepinephrine ignites local hot spots of neuronal excitation: how arousal amplifies selectivity in perception and memory. Behav Brain Sci 16:217–265

    Google Scholar 

  25. Salgado H, Köhr G, Treviño M (2012) Noradrenergic “tone” determines dichotomous control of cortical spike-timing-dependent plasticity. Sci Rep 2:1–7. doi:10.1038/srep00417

    Article  Google Scholar 

  26. Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE (2014) Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82:1263–1270. doi:10.1016/j.neuron.2014.04.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carmignoto G, Haydon PG (2012) Astrocyte calcium signaling and epilepsy. Glia 60:1227–1233. doi:10.1002/glia.22318

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zorec R, Araque A, Carmignoto G, Haydon PG, Verkhratsky A, Parpura V (2012) Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route. ASN Neuro 4:103–119. doi:10.1042/AN20110061

    Article  CAS  Google Scholar 

  29. Delekate A, Füchtemeier M, Schumacher T, Ulbrich C, Foddis M, Petzold GC (2014) Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. Nat Commun 5:5422. doi:10.1038/ncomms6422

    Article  PubMed  Google Scholar 

  30. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952. doi:10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahn S, Olive M, Aggarwal S, Krylov D, Ginty DD, Vinson C (1998) A dominant-negative inhibitor of CREB reveals that it is a general mediator of stimulus-dependent transcription of c-fos. Mol Cell Biol 18:967–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naylor E, Arredouani A, Vasudevan SR et al (2009) Identification of a chemical probe for NAADP by virtual screening. Nat Chem Biol 5:220–226. doi:10.1038/nchembio.150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Lino M (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5:4153. doi:10.1038/ncomms5153

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Raturi A, Simmen T (2013) Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Biochim Biophys Acta-Mol Cell Res 1833:213–224. doi:10.1016/j.bbamcr.2012.04.013

    Article  CAS  Google Scholar 

  35. Zhang Y, Lv X, Bai Y, Zhu X, Wu X, Chao J, Duan M, Buch S, Chen L, Yao H (2015) Involvement of sigma-1 receptor in astrocyte activation induced by methamphetamine via up-regulation of its own expression. J Neuroinflammation 12:29. doi:10.1186/s12974-015-0250-7

    Article  PubMed  PubMed Central  Google Scholar 

  36. He J, Shi W, Guo Y, Chai Z (2014) ERp57 modulates mitochondrial calcium uptake through the MCU. FEBS Lett 588:2087–2094. doi:10.1016/j.febslet.2014.04.041

    Article  CAS  PubMed  Google Scholar 

  37. Shanmughapriya S, Rajan S, Hoffman NE et al (2015) Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci Signal 8:ra23. doi:10.1126/scisignal.2005673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721. doi:10.1038/345718a0

    Article  CAS  PubMed  Google Scholar 

  39. Denton RM, Mccormack JG (1980) On the role of the calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett 119:1–8

    Article  CAS  PubMed  Google Scholar 

  40. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96:13807–13812. doi:10.1073/pnas.96.24.13807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondrial Ca2+. Cell Calcium 52:28–35. doi:10.1016/j.ceca.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tagashira H, Bhuiyan MS, Shioda N, Fukunaga K (2014) Fluvoxamine rescues mitochondrial Ca2+ transport and ATP production through σ1-receptor in hypertrophic cardiomyocytes. Life Sci 95:89–100. doi:10.1016/j.lfs.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  43. Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V (2014) Fatty acids in energy metabolism of the central nervous system. Biomed Res Int 2014:472459. doi:10.1155/2014/472459

    Article  PubMed  PubMed Central  Google Scholar 

  44. Serrano A, Haddjeri N, Lacaille J et al (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J Neurosci 26:5370–5382. doi:10.1523/JNEUROSCI.5255-05.2006

    Article  CAS  PubMed  Google Scholar 

  45. Henneberger C, Papouin T, Oliet SHR, Rusakov DA (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–236. doi:10.1038/nature08673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takata N, Mishima T, Hisatsune C et al (2011) Astrocyte calcium signaling transfmorms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165. doi:10.1523/JNEUROSCI.5289-11.2011

    Article  CAS  PubMed  Google Scholar 

  47. Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68:113–126. doi:10.1016/j.neuron.2010.08.043

    Article  CAS  PubMed  Google Scholar 

  48. Pirttimaki TM, Parri HR (2013) Astrocyte plasticity: implications for synaptic and neuronal activity. Neuroscientist 19:604–615. doi:10.1177/1073858413504999

    Article  PubMed  Google Scholar 

  49. Perez-Alvarez A, Navarrete M, Covelo A, Martin ED, Araque A (2014) Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J Neurosci 34:12738–12744. doi:10.1523/JNEUROSCI.2401-14.2014

    Article  PubMed  Google Scholar 

  50. Cheung G, Sibille J, Zapata J, Rouach N (2015) Activity-dependent plasticity of astroglial potassium and glutamate clearance. Neural Plast 2015:109106. doi:10.1155/2015/109106

    PubMed  PubMed Central  Google Scholar 

  51. Chaudhuri R, Fiete S (2015) Computational principles of biological memory. Nat Neurosci 19:394–403. doi:10.1038/nn.4237

    Article  Google Scholar 

  52. Sweatt JD (2016) Neural plasticity and behavior—sixty years of conceptual advances. J Neurochem. doi:10.1111/jnc.13580

    Google Scholar 

  53. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380

    Article  CAS  PubMed  Google Scholar 

  54. Abeti R, Abramov AY (2015) Mitochondrial Ca2+ in neurodegenerative disorders. Pharmacol Res 99:377–381. doi:10.1016/j.phrs.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  55. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Astrocytes in Alzheimer. Science 323:1211–1215. doi:10.1126/science.1169096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li H, Xie Y, Zhang N, Yu Y, Zhang Q, Ding S (2015) Disruption of IP3R2-mediated Ca2+ signaling pathway in astrocytes ameliorates neuronal death and brain damage while reducing behavioral deficits after focal ischemic stroke. Cell Calcium 58:565–576. doi:10.1016/j.ceca.2015.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruscher K, Wieloch T (2015) The involvement of the sigma-1 receptor in neurodegeneration and neurorestoration. J Pharmacol Sci 127:30–35. doi:10.1016/j.jphs.2014.11.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by Grants BFU2010-21921 and BFU2012-38844 from the Ministerio de Economía y Competitividad, Gobierno de España (Co-funded with European Regional Development’s Fund, FEDER), and Grants 2005SGR-00719 and 2014SGR-00984 from the Generalitat de Catalunya AGAUR. Abel Eraso is a recipient of the fellowship FPU13/05377 from the Ministerio de Educación, Cultura y Deporte, Gobierno de España and Raquel Larramona recipient of a fellowship from La Marató de TV3 (TV3-20141430). We thank Dr. Grant Churchill for providing us with Ned-19 and for critical reading of the manuscript and Cristina Gutiérrez for assistance in tissue culture.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Galea or R. Masgrau.

Additional information

R. Larramona-Arcas and E. Vicario-Orri equal contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eraso-Pichot, A., Larramona-Arcas, R., Vicario-Orri, E. et al. CREB decreases astrocytic excitability by modifying subcellular calcium fluxes via the sigma-1 receptor. Cell. Mol. Life Sci. 74, 937–950 (2017). https://doi.org/10.1007/s00018-016-2397-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2397-5

Keywords

Navigation