Skip to main content
Log in

On a Hamiltonian System with Critical Exponential Growth

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We are interested in finding nontrivial solutions for a Hamiltonian elliptic system in dimension two involving a potential function which can be coercive and nonlinearities that have maximal growth with respect to the Trudinger–Moser inequality. To establish the existence of solutions, we use variational methods combined with Trudinger–Moser type inequalities in Lorentz–Sobolev spaces and a finite-dimensional approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.S.B. Albuquerque, J.M do Ó, E.S. Medeiros, On a class of Hamiltonian systems involving unbounded or decaying potential in dimension two, Math. Nachr. 289 no. 13 (2016), 1568–1584.

  2. Alvino V.F., Trombetti G.: Moser-type inequalities in Lorentz spaces. Potential Anal. 5(3), 273–299 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Brezis H., Wainger S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5(7), 773–789 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassani D., Zhang J.: A priori estimates and positivity for semiclassical ground states for systems of critical Schrödinger equations in dimension two. Comm. Partial Differential Equations 42(5), 655–702 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cassani D., Tarsi C.: Existence of solitary waves for supercritical Schrödinger systems in dimension two. Calc. Var. Partial Differential Equations 54(2), 1673–1704 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassani D., Tarsi C.: A Moser-type inequality in Lorentz-Sobolev spaces for unbounded domains in \({\mathbb{R}^{N}}\). Asymptot. Anal. 64(1–2), 29–51 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Cassani D.: Lorentz-Sobolev spaces and systems of Schrödinger equations in \({\mathbb{R}^{N}}\). Nonlinear Analysis 70, 2846–2854 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Araujo A.L.A., Montenegro M.: Existence of solution for a nonvariational elliptic system with exponential growth in dimension two. J. Differential Equations 264(3), 2270–2286 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Figueiredo D.G., do Ó J.M., Ruf B.: An Orlicz-space approach to superlinear elliptic systems. J. Funct. Anal. 224(2), 471–496 (2005)

  10. D.G. de Figueiredo, J.M. do Ó, B. Ruf, Critical and subcritical elliptic systems in dimension two, Indiana Univ. Math. J. 53 no. 4 (2004), 1037–1054.

  11. de Figueiredo D.G., Felmer P.L.: On superquadratic elliptic systems. Trans. Amer. Math. Soc. 343(1), 99–116 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Souza M., do Ó J.M.: Hamiltonian elliptic systems in \({\mathbb{R}^{2}}\) with subcritical and critical exponential growth. Ann. Mat. Pura Appl. 195(3), 935–956 (2016)

  13. de Souza M., Melo W.G.: On a class of Hamiltonian systems with Trudinger-Moser nonlinearities. Adv. Differential Equations 20(3–4), 233–258 (2015)

    MathSciNet  MATH  Google Scholar 

  14. M. de Souza, On a singular Hamiltonian elliptic systems involving critical growth in dimension two, Commun. Pure Appl. Anal. 11 no. 5 (2012), 1859–1874.

  15. Halperin I.: Uniform convexity in function spaces. Duke Math. J. 21, 195–204 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hulshof J., van der Vorst R.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114(1), 32–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hunt R.A.: On \({L(p, q)}\) spaces. Enseignement Math. 12, 249–276 (1966)

    MathSciNet  MATH  Google Scholar 

  18. J.M. do Ó, E. Medeiros, U. Severo, On a quasilinear nonhomogeneous elliptic equation with critical growth in \({\mathbb{R}^{N}}\). J. Differential Equations 246 no. 4 (2009), 1363–1386.

  19. Lam N., Lu G.: Sharp singular Adams inequalities in high order Sobolev spaces. Methods Appl. Anal. 19(3), 243–266 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Y.R.S. Leuyacc, S.H.M. Soares, Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity, Commun. Contemp. Math., to appear.

  21. Y.R.S. Leuyacc, S.H.M. Soares, Singular Hamiltonian elliptic systems with critical exponential growth in dimension two, Math. Nachr., to appear.

  22. Lu G., Tang H.: Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces. Adv. Nonlinear Stud. 16(3), 581–601 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mitidieri E.: A Rellich type identity and applications. Comm. Partial Differential Equations 18(1–2), 125–151 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077–1092.

  25. S. Pohožaev, On the imbedding Sobolev theorem for \({pl = n}\), Doklady Conference, Section Math. Moscow Power Inst. 165 (1965), 158–170.

  26. Rabelo P.: Elliptic systems involving critical growth in dimension two. Commun. Pure Appl. Anal. 8(6), 2013–2035 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, in: CBMS Regional Conference Series in Mathematics Vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 1986.

  28. B. Ruf Lorentz spaces and nonlinear elliptic systems, in: Contributions to Nonlinear Analysis, pp. 471–489, Progr. Nonlinear Differential Equations Appl., Vol. 66, Birkhäuser, Basel, 2006.

  29. Su J., Wang Z.Q.: Willem M., Nonlinear Schrödinger equations with unbounded and decaying radial potentials. Commun. Contemp. Math. 9(4), 571–583 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Trudinger N.S.: On embedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio H. Monari Soares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. The second author was partly supported by CNPq/Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuyacc, Y.R.S., Soares, S.H.M. On a Hamiltonian System with Critical Exponential Growth. Milan J. Math. 87, 105–140 (2019). https://doi.org/10.1007/s00032-019-00294-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-019-00294-3

Mathematics Subject Classification (2010)

Keywords

Navigation