Skip to main content

Advertisement

Log in

Plant–plant spatial interactions in the dry Puna (southern Peruvian Andes)

  • Original Paper
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Plant–plant interactions play a key role in regulating the composition of communities. The outcome of interactions is the net effect of both positive and negative interactions. Positive interactions (facilitation) are defined as non-trophic interactions that increase the average individual fitness of at least one of the species involved. The study area was the Salinas and Aguada Blanca National Reserve, in the southern Peruvian Andes, composed of Festuca orthophylla grassland (dry Puna). The research goals were to ascertain whether spatial interactions act in this plant community, in order to determine whether beneficiary species have species–specific spatial associations. Our findings indicate that the most important nurses were the tall tussock species. A direct correlation was observed between the dimension of the F. orthophylla tussocks and the number of beneficiary species. Twelve species were closely associated with nurse species; five occurred in relation with nurse plants but without any preference for one of them; four species grew both isolated and in relationship with nurse plants and six species mostly grew isolated on bare soil. Because of the impact of grazers, some plants cannot grow on open ground; in fact, the species most in need of spatial interactions are those without avoidance strategies and/or with broad leaves. F. orthophylla is the core of a clumped spatial pattern of vegetation. The importance of spatial interactions for biodiversity conservation seems to be closely related to environmental amelioration and to grazer activity because plants of low palatability often serve as biotic refuges for palatable plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Armas C, Pugnaire FI (2005) Plant interactions govern population dynamics in a semi-arid plant community. J Ecol 93:978–989

    Article  Google Scholar 

  • Arredondo-Núñez A, Badano EI, Bustamante RO (2009) How beneficial are nurse plants? A meta-analysis of the effects of cushion plants on high-Andean plant communities. Community Ecol 10(1):1–6

    Article  Google Scholar 

  • Arroyo MTK, Cavieres LA, Peñaloza A, Arroyo-Kalin MA (2003) Positive associations between the cushion plant Azorella monantha (Apiaceae) and alpine plant species in the Chilean Patagonian Andes. Plant Ecol 169:121–129

    Article  Google Scholar 

  • Badano EI, Jones CG, Cavieres LA, Wright JP (2006) Assessing impacts of ecosystem engineers on community organization: a general approach illustrated by effects of a high-Andean cushion plant. Oikos 115:369–385

    Article  Google Scholar 

  • Badano EI, Villarroel E, Bustamante RO, Marquet PO, Cavieres LA (2007) Ecosystem engineering facilitates invasions by exotic plants in high-Andean ecosystems. J Ecol 95:682–688

    Article  Google Scholar 

  • Baumeister D, Callaway RM (2006) Facilitative effects of Pinus flexilis during succession: a hierarchy of mechanisms benefits other plant species. Ecology 87:1816–1830

    Article  PubMed  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  PubMed  CAS  Google Scholar 

  • Brack Egg A, Mendiola C (2004) Ecología del Perù. Quebecor world Peru S.A, Lima

    Google Scholar 

  • Brako L, Zarucchi JL (1993) Catalogue of the flowering plants and gymnosperms of Peru, Monographs in Systematic Botany, vol 45. Missouri Botanical Garden, St Louis

    Google Scholar 

  • Brooker RW (2006) Plant-plant interactions and environmental change. New Phytol 171:271–284

    Article  PubMed  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18(3):119–125

    Article  Google Scholar 

  • Cabrera AL (1968) Ecologia vegetal de la Puna. Colloquium Geogr 9:91–116

    Google Scholar 

  • Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349

    Article  Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, Berlin

    Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Callaway RM, Kikvidze Z, Kikodze D (2000) Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos 89:275–282

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  PubMed  CAS  Google Scholar 

  • Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191

    Article  Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Gómez-González S, Molina-Montenegro MA (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytol 169:59–69

    Article  PubMed  Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native plants in the high-Andes of central Chile. Arct Antarc Alp Res 39:229–236

    Article  Google Scholar 

  • Crofts A, Jefferson RG (1999) The lowland grassland management handbook. English Nature/The Wildlife Trusts, London

    Google Scholar 

  • Dickie IA, Schnitzer SA, Reich PB, Hobbie SE (2005) Spatially disjunct effects of co-occurring competition and facilitation. Ecol Lett 8:1191–1200

    Article  PubMed  Google Scholar 

  • Ellner S, Shmida A (1981) Why are adaptations for long-range seed dispersal rare in desert plants? Oecologia 51:133–144

    Article  Google Scholar 

  • Flores J, Jurado E (2003) Are nurse-protegé interactions more common among plants from arid environments? J Veg Sci 14:911–916

    Article  Google Scholar 

  • Franco AC, Nobel PS (1989) Effect of nurse plants on the microhabitat and growth of cacti. J Ecol 77:870–886

    Article  Google Scholar 

  • Fuentes ER, Otaiza RD, Alliende MC, Hoffmann A, Poiani A (1984) Shrub clumps of the Chilean matorral vegetation: structure and possible maintenance mechanisms. Oecologia 62:405–411

    Article  Google Scholar 

  • García E, Beck SG (2006) Puna. Botánica Económica de los Andes Centrales. Universidad Mayor de San Andrés, La Paz, pp 51–76

    Google Scholar 

  • Genin D, Tichit M (1997) Degradability of Andean range forages in llamas and sheep. J Range Manage 50(4):381–385

    Article  Google Scholar 

  • Genin D, Villca Z, Abasto P (1994) Diet selection and utilization by llama and sheep in a high altitude-arid rangeland of Bolivia. J Range Manage 47:245–248

    Article  Google Scholar 

  • Haase P, Pugnaire FI, Clark SC, Incoll LD (1996) Spatial patterns in a two-tiered semiarid shrubland in southeastern Spain. J Veg Sci 7:527–534

    Article  Google Scholar 

  • Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling. Ecol Model 157:331–341

    Article  Google Scholar 

  • Holzapfel C, Mahall BE (1999) Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80:1747–1761

    Article  Google Scholar 

  • Hunter AF, Aarssen LW (1988) Plants helping plants. Bioscience 38:34–40

    Article  Google Scholar 

  • Kikvidze Z, Pugnaire FM, Brooker RW, Choler P, Lortie J, Michalet R, Callaway R (2005) Linking patterns and processes in alpine plant communities: a global study. Ecology 86(6):1395–1400

    Article  Google Scholar 

  • Kikvidze Z, Michalet R, Brooker RW, Cavieres LA, Lortie CJ, Pugnaire FI, Callaway RM (2011) Climatic drivers of plant–plant interactions and diversity in alpine communities. Alp Bot 121:63–70

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  • McAuliffe JR (1988) Markovian dynamics of simple and complex desert plant communities. Am Nat 131:459–490

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of Ecological Communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data. Version 5. MjM Software Design, Gleneden Beach

  • McIntire EJB, Fajardo A (2009) Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90(1):46–56

    Article  PubMed  Google Scholar 

  • Milchunas DG, Noy-Meir I (2002) Grazing refuges external avoidance of herbivory and plant diversity. Oikos 99:113–130

    Article  Google Scholar 

  • Molina-Montenegro MA, Badano EI, Inostroza P, Cavieres LA (2005) Intercambio gaseoso en dos especies de plantas alto andinas de Chile central: efecto de la asociación a plantas en cojín. Ecología Austral 15:49–58

    Google Scholar 

  • Monteiro JAF, Hiltbrunner E, Körner C (2011) Functional morphology and microclimate of Festuca orthophylla, the dominant tall tussock grass in the Andean Altiplano. Flora 206:387–396

    Article  Google Scholar 

  • Montenegro B, Zúñiga S, Zeballos H (2010) Climatología de la Reserva Nacional Salinas y Aguada Blanca, suroeste del Perú. In: Zeballos H, Ochoa JA, López E (eds) Diversidad biológica de la Reserva Nacional de Salinas y Aguada Blanca. Desco, Profonanpe, Sernanp. Lima, pp 261–273

  • Moro MJ, Pugnaire FI, Haase P, Puigdefábregas J (1997) Effect of the canopy of Retama sphaerocarpa on its understory in a semiarid environment. Funct Ecol 11:425–431

    Article  Google Scholar 

  • Oesterheld M, Oyarzábal M (2004) Grass-to-grass protection from grazing in a semi-arid steppe. Facilitation, competition, and mass effect. Oikos 107:576–582

    Article  Google Scholar 

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4(4):196–202

    Article  Google Scholar 

  • Patty L, Halloy SRP, Hiltbrunner E, Körner C (2010) Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora 205:695–703

    Article  Google Scholar 

  • Podani J (2001) Syn-tax 2000 Computer program for data analysis in ecology and systematics. Scientia, Budapest

    Google Scholar 

  • Pugnaire FI, Luque MT (2001) Changes in plant interactions along a gradient of environmental stress. Oikos 93:42–49

    Article  Google Scholar 

  • Pugnaire FI, Haase P, Puigdefábregas J (1996) Facilitation between higher plant species in a semiarid environment. Ecology 77:1420–1426

    Article  Google Scholar 

  • Rebollo S, Milchunas DG, Noy-Meir I, Chapman PL (2002) The role of a spiny plant refuge in structuring grazed shortgrass steppe plant communities. Oikos 98:53–64

    Article  Google Scholar 

  • Rivas-Martínez S, Tovar O (1982) Vegetatio Andinae, I. Datos sobre las comunidades vegetales altoandinas de los Andes Centrales del Perú. Lazaroa 4:167–187

    Google Scholar 

  • Schenk HJ, Mahall BE (2002) Positive and negative plant interactions contribute to a north–south-patterned association between two desert shrub species. Oecologia 132:402–410

    Article  Google Scholar 

  • Sebastià MT, de Bello F, Puig L, Taull M (2008) Grazing as a factor structuring grasslands in the Pyrenees. Appl Veg Sci 11:215–222

    Article  Google Scholar 

  • SPSS Inc (2005) SPSS for Windows. Version 13.0. Chicago, Illinois

    Google Scholar 

  • Talavera C, Ortega A, Villegas L (2010) Flora y vegetación de la Reserva Nacional de Salinas y Aguada Blanca, Perú. In: Zeballos H, Ochoa JA, López E (eds) Diversidad biológica de la Reserva Nacional de Salinas y Aguada Blanca. Desco, Profonanpe, Sernanp, Lima, pp 89–104

  • Tewksbury JJ, Lloyd JD (2001) Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127:425–434

    Article  Google Scholar 

  • Tewksbury JJ, Nabhan GP, Norman D, Suzan H, Tuxill J, Donovan J (1999) In situ conservation of wild chiles and their biotic associates. Conserv Biol 13:98–107

    Article  Google Scholar 

  • Tirado R, Pugnaire FI (2003) Shrub spatial aggregation and consequences for reproductive success. Oecologia 136:296–301

    Article  PubMed  Google Scholar 

  • Valiente-Banuet A, Ezcurra E (1991) Shade as a cause of the association between the cactus Neobuxbaumia tetetzo and the nurse plant Mimosa luisana in the Tehuacan Valley, Mexico. J Ecol 79:961–971

    Article  Google Scholar 

  • Valiente-Banuet A, Verdú M (2007) Facilitation can increase the phylogenetic diversity of plant communities. Ecol Lett 10:1029–1036

    Article  PubMed  Google Scholar 

  • Valiente-Banuet A, Vite F, Zavala-Hurtado JA (1991) Interaction between the cactus Neobuxbaumia tetetzo and the nurse shrub Mimosa luisana. J Veg Sci 2:11–14

    Article  Google Scholar 

  • Vetaas OR (1992) Micro-site effects of trees and shrubs in dry savannas. J Veg Sci 3:337–344

    Article  Google Scholar 

  • Walker LR (1994) Effects of fern thickets on woodland development on landslides in Puerto Rico. J Veg Sci 5:525–532

    Article  Google Scholar 

  • Yager K, Resnikowski H, Halloy S (2008) Grazing and climatic variability in Sajama national park, Bolivia. Pirineos 163:97–109

    Article  Google Scholar 

  • Zeballos H, Ochoa JA, Cornejo A (2010) La Reserva Nacional de Salinas y Aguada Blanca, una muestra representativa de puna seca de América del Sur. In: Zeballos H, Ochoa JA, López E (eds) Diversidad biológica de la Reserva Nacional de Salinas y Aguada Blanca. Desco, Profonanpe, Sernanp, Lima, pp 15–29

    Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Peruvian Trust Fund for National Parks and Protected Areas (PROFONANPE), Funds for Applied Research (F.A.R.) of the Italian Ministry of Education, University, and Research (M.I.U.R.) assigned to Prof. Andrea Catorci, and a grant of the School of Advanced Studies PhD Course in Environmental Sciences and Public Health, University of Camerino (Italy) assigned to Dr. Sabrina Cesaretti. The authors would like to thank the Peruvian National Service of Natural Protected Areas (SERNANP) for the authorization to investigate in the Salinas and Aguada Blanca National Reserve; Dr. John Machaca (Desco) for logistic support and Ms. Sheila Beatty for the English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Cesaretti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catorci, A., Cesaretti, S., Velasquez, J.L. et al. Plant–plant spatial interactions in the dry Puna (southern Peruvian Andes). Alp Botany 121, 113–121 (2011). https://doi.org/10.1007/s00035-011-0097-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-011-0097-1

Keywords

Navigation