Skip to main content
Log in

Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers

Hypoxie-Bildgebung mit [18F]-FMISO-PET für geführte Dosissteigerung bei intensitätsmodulierter Strahlentherapie bei Kopf-Hals-Tumoren

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Positron emission tomography (PET) with [18F]-fluoromisonidazole ([18F]-FMISO) provides a non-invasive assessment of hypoxia. The aim of this study is to assess the feasibility of a dose escalation with volumetric modulated arc therapy (VMAT) guided by [18F]-FMISO-PET for head-and-neck cancers (HNC).

Patients and methods

Ten patients with inoperable stages III–IV HNC underwent [18F]-FMISO-PET before radiotherapy. Hypoxic target volumes (HTV) were segmented automatically by using the fuzzy locally adaptive Bayesian method. Retrospectively, two VMAT plans were generated delivering 70 Gy to the gross tumour volume (GTV) defined on computed tomography simulation or 79.8 Gy to the HTV. A dosimetric comparison was performed, based on calculations of tumour control probability (TCP), normal tissue complication probability (NTCP) for the parotid glands and uncomplicated tumour control probability (UTCP).

Results

The mean hypoxic fraction, defined as the ratio between the HTV and the GTV, was 0.18. The mean average dose for both parotids was 22.7 Gy and 25.5 Gy without and with dose escalation respectively. FMISO-guided dose escalation led to a mean increase of TCP, NTCP for both parotids and UTCP by 18.1, 4.6 and 8 % respectively.

Conclusion

A dose escalation up to 79.8 Gy guided by [18F]-FMISO-PET with VMAT seems feasible with improvement of TCP and without excessive increase of NTCP for parotids.

Zusammenfassung

Hintergrund und Zielsetzung

Die Positronenemissionstomographie (PET) mit [18F]-Fluoromisonidazol ([18F]-FMISO) ermöglicht eine nichtinvasive Beurteilung der Hypoxie. Ziel dieser Studie ist es, die Durchführbarkeit einer [18F]-FMISO-PET-geführten Dosissteigerung bei volumetrisch modulierter Arc-Therapie (VMAT) von Kopf-Hals-Tumoren (KHT) zu bewerten.

Patienten und Methoden

Zehn Patienten mit inoperablen KHT der Stadien III-IV erhielten vor der Strahlentherapie eine [18F]-FMISO-PET. Hypoxische Zielvolumina (HV) wurden automatisch mit Hilfe des FLAB(Fuzzy Locally Adaptive Bayesian)-Verfahrens segmentiert. Retrospektiv wurden 2 VMAT-Pläne erstellt, mit 70 Gy auf das CT-basierte GTV („gross tumour volume“) bzw. 79,8 Gy auf das HV. Durchgeführt wurde ein Vergleich der Dosimetrie, basierend auf Berechnungen von TCP („tumour control probability“), NTCP („normal tissue complication probability“) für die Glandulae (Gl.) parotidis und UTCP („uncomplicated tumour control probability“).

Ergebnisse

Die mittlere hypoxische Fraktion, definiert als das Verhältnis zwischen HV und GTV, betrug 0,18. Die mittlere durchschnittliche Dosis für beide Parotiden betrug 22,7 Gy ohne und 25,5 Gy mit Dosissteigerung. Die FMISO-geführte Dosissteigerung ergab einen mittleren Anstieg von TCP, NTCP für beide Gl. parotidis und UTCP um 18,1/4,6 bzw. 8 %.

Schlussfolgerung

Eine [18F]-FMISO-PET-geführte Dosissteigerung mit VMAT bis zu 79,8 Gy scheint mit einer Verbesserung der TCP und ohne übermäßige Erhöhung der NTCP für die Gl. parotidis durchführbar zu sein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carlson DJ, Stewart RD, Semenenko VA (2006) Effects of oxygen on intrinsic radiation sensitivity: a test of the relationship between aerobic and hypoxic linear-quadratic (LQ) model parameters. Med Phys 33(9):3105–3115

    Article  CAS  PubMed  Google Scholar 

  2. Chao KSC, Ozyigit G, Tran BN, Cengiz M, Dempsey JF, Low DA (2003) Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 55(2):312–321

    Article  PubMed  Google Scholar 

  3. Cheung MR, Tucker SL, Dong L et al (2007) Investigation of bladder dose and volume factors influencing late urinary toxicity after external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 67(4):1059–1065

    Article  PubMed Central  PubMed  Google Scholar 

  4. Dijkema T, Raaijmakers CPJ, Ten Haken RK et al (2010) Parotid gland function after radiotherapy: the combined Michigan and Utrecht experience. Int J Radiat Oncol Biol Phys 78(2):449–453

    Article  PubMed Central  PubMed  Google Scholar 

  5. Dirix P, Vandecaveye V, Keyzer F De, Stroobants S, Hermans R, Nuyts S. (2009) Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med Off Publ Soc Nucl Med 50(7):1020–1027

  6. Eschmann SM, Paulsen F, Bedeshem C et al (2007) Hypoxia-imaging with (18)F-misonidazole and PET: changes of kinetics during radiotherapy of head-and-neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 83(3):406–410

    Article  CAS  Google Scholar 

  7. Fogliata A, Bolsi A, Cozzi L, Bernier J. (2003) Comparative dosimetric evaluation of the simultaneous integrated boost with photon intensity modulation in head and neck cancer patients. Radiother Oncol J Eur Soc Ther Radiol Oncol 69(3):267–275

    Article  Google Scholar 

  8. Grégoire V, Coche E, Cosnard G, Hamoir M, Reychler H (2000) Selection and delineation of lymph node target volumes in head and neck conformal radiotherapy. Proposal for standardizing terminology and procedure based on the surgical experience. Radiother Oncol J Eur Soc Ther Radiol Oncol 56(2):135–150

    Article  Google Scholar 

  9. Hatt M, Cheze le Rest C, Descourt P et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77(1):301–308

    Article  PubMed  Google Scholar 

  10. Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893

    Article  PubMed Central  PubMed  Google Scholar 

  11. Henriques de Figueiredo B, Merlin T, Clermont-Gallerande H de et al (2013) Potential of [(18)F]-fluoromisonidazole positron-emission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlenther Onkol Organ Dtsch Rontgengesellschaft Al 189(12):1015–1019

  12. Lambrecht M, Nevens D, Nuyts S. (2013) Intensity-modulated radiotherapy vs. parotid-sparing 3D conformal radiotherapy. Effect on outcome and toxicity in locally advanced head and neck cancer. Strahlenther Onkol Organ Dtsch Röntgenges Al 189(3):223–229

  13. Lin Z, Mechalakos J, Nehmeh S et al (2008) The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18 F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 70(4):1219–1228

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ling CC, Humm J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47(3):551–560

    Article  CAS  PubMed  Google Scholar 

  15. Lyman JT (1985) Complication probability as assessed from dose-volume histograms. Radiat Res Suppl 8:13–19

    Article  Google Scholar 

  16. Maciejewski B, Withers HR, Taylor JM, Hliniak A (1989) Dose fractionation and regeneration in radiotherapy for cancer of the oral cavity and oropharynx: tumor dose-response and repopulation. Int J Radiat Oncol Biol Phys 16(3):831–843

    Article  CAS  PubMed  Google Scholar 

  17. Madani I, Duprez F, Boterberg T et al (2011) Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 101(3):351–355

    Article  Google Scholar 

  18. Mohan R, Mageras GS, Baldwin B et al (1992) Clinically relevant optimization of 3-D conformal treatments. Med Phys 19(4):933–944

    Article  CAS  PubMed  Google Scholar 

  19. Nordsmark M, Bentzen SM, Rudat V et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol J Eur Soc Ther Radiol Oncol 77(1):18–24

    Article  Google Scholar 

  20. Okamoto S, Shiga T, Yasuda K et al (2013) High reproducibility of tumor hypoxia evaluated by 18 F-fluoromisonidazole PET for head and neck cancer. J Nucl Med Off Publ Soc Nucl Med 54(2):201–207

    CAS  Google Scholar 

  21. Overgaard H (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1):10–21

    Article  Google Scholar 

  22. Rajendran JG, Schwartz DL, O’Sullivan J et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res Off J Am Assoc Cancer Res 12(18):5435–5441

    Article  CAS  Google Scholar 

  23. Strigari L, D’Andrea M, Abate A, Benassi M (2008) A heterogeneous dose distribution in simultaneous integrated boost: the role of the clonogenic cell density on the tumor control probability. Phys Med Biol 53(19):5257–5273

    Article  CAS  PubMed  Google Scholar 

  24. Thorwarth D, Eschmann S-M, Paulsen F, Alber M (2007) Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68(1):291–300

    Article  PubMed  Google Scholar 

  25. Thorwarth D, Eschmann S-M, Paulsen F, Alber M (2007) A model of reoxygenation dynamics of head-and-neck tumors based on serial 18 F-fluoromisonidazole positron emission tomography investigations. Int J Radiat Oncol Biol Phys 68(2):515–521

    Article  CAS  PubMed  Google Scholar 

  26. Webb S, Nahum AE (1993) A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density. Phys Med Biol 38(6):653–666

    Article  Google Scholar 

  27. Zips D, Zöphel K, Abolmaali N et al (2012) Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer. Radiother Oncol J Eur Soc Ther Radiol Oncol 105(1):21–28

    Article  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest

B. Henriques de Figueiredo, C. Zacharatou, S. Galland-Girodet, J. Benech, H. De Clermont-Gallerande, F. Lamare, M. Hatt, L. Digue, E. De Mones del Pujol, and P. Fernandez state that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Henriques de Figueiredo M.D., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henriques de Figueiredo, B., Zacharatou, C., Galland-Girodet, S. et al. Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-and-neck cancers. Strahlenther Onkol 191, 217–224 (2015). https://doi.org/10.1007/s00066-014-0752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0752-8

Keywords

Schlüsselwörter

Navigation